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Abstract

Social platforms often use curation algorithms to match content to user tastes. Although

designed to improve user experience, these algorithms have been blamed for increased polariza-

tion of consumed content. We analyze how curation algorithms impact the number of friends

users follow and the quality of content generated on the network, taking into account horizontal

and vertical differentiation. Although algorithms increase polarization for fixed networks, when

they indirectly influence network connectivity and content quality their impact on polarization

and segregation is less clear.

We find that network connectivity and content quality are strategic complements, and that

introducing curation makes consumers less selective and increases connectivity. In equilibrium,

content creators receive lower payoffs because the competition leads to a prisoner’s dilemma.

Filter bubbles are not always a consequence of curation algorithms. A perfect filtering

algorithm increases content polarization and creates a filter bubble when the marginal cost of

quality is low, while an algorithm focused on vertical content quality increases connectivity

as well as lowers polarization and does not create a filter bubble. Consequently, although

user surplus can increase through curating and encouraging high quality content, the type of

algorithm used matters for the unintended consequence of creating a filter bubble.
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1 Introduction

When social media platforms emerged, one of their major appeals was the promise of personalized

content. By telling the platform who their friends are, users could have more social interactions

and consume content that was tailored to their tastes. Because they could connect to homophilous

friends, consumers were assumed to be exposed to content which felt more personal and within their

domain of interest. If in the past, for example, national newspapers did not delve into local matters

while local newspapers did, social platforms were meant to be the ultimate source for relevant and

personalized content. A second appeal of social platforms was that users could also become content

creators, while sharing it easily with their friends and followers. Creators of content could thus

gain utility (through fame, reputation or intrinsic enjoyment) by having readers interact with the

content without having to compete with other creators over limited publishing space.

The adoption of these platforms and accessibility of their content creation technology has led

to a dramatic increase in the frequency and volume of available content. Statistics published by

leading platforms1 indicate that over 48, 000 photos were published on Instagram every minute in

2015, while Twitter users posted over 347, 000 tweets per minute in the same time frame. This

large volume of content has often led to information overload and to desensitization to new ideas

(Rodriguez et al. 2014).

To help users manage this overload, social platforms introduced curation algorithms whose goal

is to select or rank the best content for users to consume. In the case of Facebook’s newsfeed,

for example, the platform selects stories that “are influenced by your connections and activity on

Facebook. This helps you to see more stories that interest you from friends you interact with the

most.”2 Instagram introduced a ranking algorithm “so you’ll see the moments you care about

first.”3 The problem the platform was trying to solve was that “On average, people miss 70

percent of their feeds. It’s become harder to keep up with all the photos and videos people share

as Instagram has grown.”4

1See, e.g. https://www.networkworld.com/article/2915538/7-staggering-social-media-use-by-the-

minute-stats.html, accessed September 12, 2019.
2https://www.facebook.com/help/327131014036297/, accessed July 9, 2019.
3https://instagram-press.com/blog/2016/03/15/see-the-moments-you-care-about-first/, accessed July

9, 2019.
4Ibid.
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These curation algorithms constitute a major product design choice for social media platforms.

Although the introduction of these algorithms was aimed to increase user activity and satisfaction,

this had not always been the outcome. In April 2016 it emerged that users of Facebook have been

sharing less original personal content over time and opted to post and share more professionally

produced content such as news and other information.5 Consequently, in January 2018 Facebook

announced that they are changing their newsfeed algorithm because “public content – posts from

businesses, brands and media – is crowding out the personal moments that lead us to connect more

with each other”.6

A second issue often attributed to the adoption of curation algorithms is the creation of “filter

bubbles”7—a state in which social media consumption exhibits increased polarization and segre-

gation of consumed content, and where ideas and concepts, limited in their diversity, match the

consumer’s beliefs. Early work by Van Alstyne and Brynjolfsson (2005) has shown that increased

connectivity between online users can either fragment or better connect communities depending

on the content and community preferences. As a result, “cyber-balkanization” may arise online.

Recently, the issue has become so prevalent that The Onion, a satirical website, published an ar-

ticle with the sarcastic title “Horrible Facebook Algorithm Accident Results In Exposure To New

Ideas”.8

Despite the belief that algorithms are the root cause of increased online polarization, there

is not much evidence to support this claim (Gentzkow 2016, Boxell et al. 2017). On one hand,

because users can now choose to connect only with friends with similar tastes, we would expect

decreased exposure to diverse ideas and increased polarization in content consumption. On the

other hand, because an algorithm now assists the users in filtering for the best content, they may

choose to change who they consume content from, and this may result in altered consumption

patterns. We therefore make the distinction between polarization of content consumption, which

may exogenously stem from individual self-selection over horizontally differentiated content, and

a filter bubble, which entails increased polarization of the content consumed because of a curation

5http://www.bloomberg.com/news/articles/2016-04-07/facebook-said-to-face-decline-in-people-

posting-personal-content, accessed July 9, 2019.
6https://www.facebook.com/zuck/posts/10104413015393571, accessed July 9, 2019.
7The term was coined in Pariser (2011).
8http://www.theonion.com/article/horrible-facebook-algorithm-accident-results-expos-53841, ac-

cessed July 9, 2019.
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algorithm. In other words, although polarization may exist on social media (e.g., because of taste

biases), we ask about the contribution of the platform to this polarization by catering to user

preferences.

In this paper we analyze the effects that selection and filtering algorithms have on social net-

work structure, the quality of content produced by network members and the polarization of content

consumed. This process, which we call algorithmic curation may have several possible effects on

consumers and creators of content which we call receivers and senders, respectively. For receivers,

if algorithmic curation is able to improve their experience, they may become less selective in their

friend selection resulting in longer friends lists. For senders, if algorithmic curation increases net-

work connectivity, an individual sender may now face stronger competition in receiving attention

for her content. Moreover, the sender may have a harder time passing the filtering bar of the

algorithm, and a harder time passing the bar of quality that elicits a positive interaction from a

receiver. All in all, algorithmic curation may cause an increase or a decrease in the quality of

content on the platform, which may result in more selective or less selective friending by receivers.

To analyze these effects we set up an analytical model with three types of players; a platform,

receivers and senders. The platform’s goal is to design an algorithm that maximizes receiver utility,

which would cause receivers to keep visiting the platform in the long run and allow the platform

to maximize its income from advertising. Receivers derive utility from consuming content items

that were produced by senders they follow. These items have two stochastic components to their

utility which depend on the distance of a sender from a receiver in terms of their tastes, as well

as the quality of the content item which may fluctuate among items produced by the same sender.

To control and maximize the utility they receive from items, receivers decide whom to friend as

well as how many content items to consume. We also model senders who set their quality level

strategically and derive utility when their content is liked by receivers. Sender payoffs are thus

dependent on the quality they provide to receivers and on the competition they face from other

senders.

We compare three types of algorithms available to platforms with a benchmark case when no

curation is in effect, while later we show that these algorithms encompass the range of options a

platform will pick in equilibrium. The Perfect Algorithm (PA) filters out the content which is below

a threshold for a given receiver and only shows content to the receiver which is above the threshold.
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This algorithm is “perfect” in that it can observe the true utility the receiver will obtain from

content. The Quality Algorithm (QA) selects the content that passes a minimum quality bar, but

cannot tell for each receiver if the item is close to her taste or far from it. In this way, the platform

encourages high quality content, and focuses less on the individual match to each consumer. The

third algorithm, which we call the Distance Algorithm (DA), selects for each consumer the content

from the closest friends to her, but cannot tell whether each item is of high or low quality. An

extension in the online appendix further analyzes filtering based on the popularity of content and

shows that the results are similar to the quality algorithm.

The analysis focuses on the equilibrium quality of content and number of friends receivers follow.

Our first results, focusing on the receivers, show that when the platform uses a curation algorithm,

receivers are incentivized to connect to more senders because the platform provides assurances that

the receiver will not experience too low utility. The perfect algorithm provides more assurance than

the quality algorithm and elicits higher connectivity. Interestingly the distance algorithm does not

increase connectivity, because filtering on horizontally differentiated senders does not incentivize

receivers to increase connectivity which remains unchanged compared to the no algorithm case.

Examining the filtering outcome on network connectivity allows us to compare the average

social distances of consumed messages between a sender/receiver pair as a measure of content

polarization. Intriguingly, when the average quality of messages is low compared to consumption

costs, both the perfect algorithm and the quality algorithm increase the average distance, resulting

in decreased polarization. This stems from the increased connectivity achieved by these algorithms

when compared to the no algorithm case, leading to connections to individuals at a higher distance.

Even though some messages may come from individuals far away in the social space, they will pass

through the filters if their quality is high enough. Thus, a filter bubble does not form in this

case, but on the contrary, filtering helps reduce polarization through encouraging more distant

friendships.

Only when the average quality of messages is high does the perfect algorithm lead to a lower

average distance and increased polarization. The intuition is that above a certain level of qual-

ity, receivers have connected to many senders, including some at high distances. The algorithm,

however, still filters content with decently high quality, trying to compensate for the increased

distances. This yields lower average distances observed by the receiver, a characteristic of a filter
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bubble.

As apparent, the popular argument that filtering always causes these bubbles may not hold in

general. Content polarization may be high online because users are allowed to pick the “friends”

they consume content from. If these connections were not impacted by curation algorithms, the

filtering would have indeed increased polarization. However, because algorithms can indirectly

influence the network structure, only the perfect algorithm increases polarization and only when

messages are of high quality in a highly connected network. In a typical setting of relatively

low quality messages, filtering algorithms tend to increase the average distance, increase content

diversity and reduce polarization.

Analyzing the full model with endogenized sender behavior reveals that the equilibrium content

quality under the quality and perfect algorithms is higher than the benchmark case when the cost of

quality is high. When quality costs are low, senders produce high enough quality that no filtering

is needed and the algorithms are not effective. When the cost of quality is high, however, the

algorithms effectively threaten the senders to increase their quality or face filtering. This allows

the platform to provide receivers with content that maintains a higher level of quality compared to

the no algorithm case.

An interesting outcome of this analysis demonstrates that the user surplus (welfare) under a

curation algorithms is higher than without an algorithm only when quality is relatively cheap to

produce. Although the algorithms may reduce the payoff for senders, they more than compensate

with increased user surplus, as long as the platform makes it cheap for senders to invest in quality.

However, when quality costs are high, the social welfare declines when using an algorithm by

placing too much pressure on content creators. While we do not directly study the business model

and revenues of the platform, the user surplus analysis provides insights on product design as the

platform arguably profits most when the sum of payoffs in the ecosystem is the highest. In essence,

platforms face a conflicting choice; either increase welfare and create a bubble, or increase diversity

but lower overall surplus.

The implications of our research apply to a growing trend of firms to employ machine learning

algorithms to improve user experience, sometimes resulting in surprising reduction in user satisfac-

tion, increased polarization in communication patterns, and dissatisfaction of advertisers. Taking

into account the equilibrium effects of a curation algorithm in these two-sided platforms should
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help platforms better design their algorithmic products.

The remainder of the paper is structured as follows. Section 2 overviews related work on social

algorithms, recommendation systems, and the impact of filtering and ranking algorithms. Section

3 introduces our model as well as the different types of algorithmic curation. Section 4 analyzes

the receivers’ decision problem and resulting connectivity with exogenous senders, while Section 5

explores the distance consumed messages arrive from to address the issue of filter bubbles. Next,

Section 6 analyzes and endogenizes the senders’ choice and receivers “like” activities, and Section

7 solves for the full equilibrium choice of filtering algorithm and analyzes the full equilibrium out-

comes. Finally, Section 8 discusses limitations to our model and concludes. The proofs are relegated

to the Appendix throughout the paper, while the online appendix analyzes other extensions to our

model as well as the impact on user surplus.

2 Related Literature

The literature analyzing the impact of selection and filtering algorithms has initially focused on

how to design better algorithms, famous examples of which are Shardanand and Maes (1995) and

Linden et al. (2003). Recently, more focus has been put on the economics and impact of such

algorithms on consumers and the diversity of consumed products (See, e.g., Latzer et al. (2016) for

a survey).

One stream of this recent research has focused on the impact of recommendation systems

on product consumption trying to determine whether the diversity and volume of products con-

sumed increases after a recommendation system is introduced. Oestreicher-Singer and Sundarara-

jan (2012) and Hosanagar et al. (2013) find that the introduction of recommendation systems tends

to increase the diversity of products bought by customers, as well as to increase their consumption

volume.

A second stream of research focuses on the impact of news and media aggregators on the

network structure and quality of content created online. Athey et al. (2017) and Chiou and Tucker

(2017) find that news aggregators serve as a complement to news websites, and allowing news

aggregators to include excerpts of content from news sites benefits news sites in the long run as

the number of their visitors increase. In addition visitors are able to visit and explore more niche

content. Dellarocas et al. (2013) and Roos et al. (2015) find that on one hand, websites that create
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content can benefit from aggregators helping visitors find their content, but on the other hand the

same aggregators appropriate advertising profits as well as cause more competition for the content

creator websites. In this sense, the findings are similar to ours that a filtering platform that helps

consumers find better content causes more linking within the network which results in stronger

competition among content creators.

Works analyzing polarization of online content consumption provide mixed evidence about

whether algorithms drive an increase or decrease in online polarization and segregation. Bakshy

et al. (2015) have shown that algorithmic curation does limit somewhat the cross transfer of political

ideas between the virtual isles on social media, but the filtering effect of the algorithm has a

smaller impact than the preferences of consumers on whether to consume or not consume the

content. Nguyen et al. (2014) and Flaxman et al. (2016) found some evidence for polarization

in the form of lowered average distance between the preferences of consumers, but also found an

increase in the dispersion of content consumed. Lee et al. (2014) and Barberá (2014) have found

that frequent use of social media is associated with more heterogeneous online connections (in

terms of political ideology), and that increased social media use does not increase polarization, but

rather the opposite. Finally, Boxell et al. (2017) provide empirical evidence against the argument

that increased internet usage is associated with rising political polarization. We contribute to this

research by considering how the endogenous formation of social media links and content production

are impacted by curation algorithms, and how these affect the polarization of content consumption.

Su et al. (2016) analyze Twitter’s “Who to follow” suggestions to users. The paper shows that

popular users on the platform will “get richer” and will gain more followers, but that in general the

entire network will have more connections created. Their analysis does not look at the strategic

impact on content quality, polarization or impact of different algorithms. The complementary work

in Iyer and Katona (2015) analyzes the incentives of social media members to become senders based

on the structure of the network they face and the resulting amount of competition. The authors

find that increased connectivity increases competition among senders, a finding which is similar

to ours. This results in higher message intensity, but in equilibrium results in a lower amount of

senders creating content. In our model we endogenize the network structure as well as analyze

different possible algorithms for curation and their impact. Our findings on the impact on distance

and quality of content are also an addition to this literature.
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3 Model

We have three types of players in the market. The first one is the social networking platform that

provides the infrastructure for consumers to befriend each other and share content. The second

and third types are N consumers of whom some are senders who produce content and some are

receivers who consume content. Let α denote the proportion of consumers who take on the role of

a sender. Thus, we have αN senders and (1− α)N receivers in the market. Throughout the paper

we assume that a user can be either a sender or a receiver. The online appendix analyzes a model

which endogenizes α and allows users to mix between sending and receiving.

3.1 Receivers

Receivers are identical, and are evenly distributed in the social network. Let R be a prototypical

receiver. When R consumes an item posted by sender j, the item yields utility Uj = Qj − Dj .

The quality of the item Qj is distributed uniformly in the [qj , qj + 1] interval, where qj is the

baseline quality level set by sender j. The distance Dj between the sender j and receiver R is also

a random variable and is distributed uniformly between [0, 2ϕ], where ϕ measures the connectivity

of a receiver with 0 < ϕ < 1. Receivers set ϕ by deciding how many senders to connect to,

where the extreme case of ϕ = 1 means that the receiver is connected to all of the senders in the

network. When connecting to senders, receivers will take into account the expected utility of the

content generated by each sender. If the receiver will be indifferent between connecting and not

connecting with a sender, we assume they decide to not connect with a sender. This is equivalent

to the assumption that connecting to senders has a small cost associated with it.9 We assume

that receivers and senders are uniformly distributed throughout the social network, therefore the

number of senders a receiver is connected to is ϕαN .

The setup has two main features. First, the receiver does not exactly observe the distance of

content from a given friend,10 but has an idea about the distribution of distances. This feature

captures the notion that social distance is hard to observe, might also depend on a certain topic, and

can fluctuate over time. Second, the expected distance becomes higher as an individual selects more

friends. This is a natural assumption given that people tend to become friends with homophilous

9We elected not to model this cost to maintain the model’s parsimony.
10We adopt the term “friend”, officially used by Twitter to denote a user who is followed on Social media.
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individuals. The specific distribution we use was selected to facilitate parsimony but is not required

for the results to hold. The main assumption is that there are cases when receivers will receive

negative expected utility if they connect to too many senders and if the quality of content produced

is not high enough to compensate for that. The topology of a Salop circular model exhibits these

same features. We chose this symmetric setup for the sake of parsimony; thus it may not capture

the skewed nature of connections and the presence of “celebrity” nodes in a real social network. In

the online appendix we show how introducing heterogeneity and generalizing our model can lead

to a more realistic model and outcome.

When a receiver consumes content, she decides to read J content items, each item from one of

J random friends, where J < ϕαN , the number of friends the receiver has among the senders. The

cost of reading each item is c and the utility of content from a random friend j is Uj = Qj −Dj as

defined before, with j = 1 . . . J .11

Consequently, receiver R’s payoff is:

πR =
J∑
j=1

(Uj − c) =
J∑
j=1

(Uj)− Jc (1)

Receivers also express their liking of content which gives utilities to senders. When a piece of

content consumed by a receiver is above a certain threshold, the receiver likes it. The details of

this process are described in the section that details the utilities of the senders.

3.2 The platform and curation

Consumers cannot be sure about the utility they get from a piece of content until they consume

it. Due to the variation in content quality and fit, they often decide to consume content that turns

out to yield low or potentially negative utility ex-post. We model algorithmic curation as a process

that filters content in order to maximize receiver payoff.

An algorithm is described by a scoring formula that assigns a score Sj to each content item

and a threshold t that filters all items with a score below the threshold. The score is based on the

item’s sender, receiver and content quality, and is defined as Sj = βQ ·Q− βD ·D. The parameters

βQ and βD capture the weights that the social network platform assigns to the quality and distance

of each content item. The threshold t is also set by the social network platform.

11The online appendix shows the results hold when costs of consumption are convex.
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In reality, platforms use algorithms that are imperfect and depend on the investment the plat-

forms make in measuring Q and D. We assume that the platform needs to invest to observe Q or

D, each at a cost of γQ or γD respectively.

Our main analysis compares the following algorithms, while Section 7.1 shows the conditions in

which each of these algorithms is optimal:

• The perfect algorithm (PA) observes all relevant information and can perfectly determine

receiver utility, setting the score equal to the receiver utility, that is Sj = Uj . The cost of

implementation is γQ + γD.

• The quality algorithm (QA) does not observe social distance nor takes it into account. It

observes quality perfectly and sets the score equal to the quality of a piece of content, that is

βQ = 1, βD = 0 and Sj = Qj , at a cost of γQ.

• The distance algorithm (DA) ignores quality and sets the score equal to the distance between

the sender of a specific item and the receiver. In this case, the algorithm filters above a certain

distance threshold. Thus, here we set Sj = −Dj , because −Dj > t is equivalent to Dj < −t.

The platform therefore sets βD = 1 and βQ = 0 at a cost of γD.

We assume that the objective of the platform is to maximize receiver utility net of algorithm

implementation costs. This assumption is consistent with a platform that profits from advertising

or from charging subscription fees. If the platform charges subscription fees, maximizing the utility

of the receiver will allow it to extract the most surplus in fees. If the platform uses advertising as an

income source, it can impose a higher disutility of advertising on receivers if the receivers have more

surplus from reading non-advertising items (Godes et al. 2009). In the long-run, because platforms’

income from advertising depends on the number of content readers, if the platform provides users

with low utility items, they may also choose to abandon the platform and consume content on a

competing platform that provides higher surplus.12 Hence, the platform’s payoff is:

πR(βQ, βD, t)− I(βQ 6= 0)γQ − I(βD 6= 0)γD (2)

where I(·) is the indicator function.

12See, e.g., http://www.emarketer.com/newsroom/index.php/facebook-losing-younger-users-faster-pace/

on young consumers abandoning Facebook for competing platforms. Accessed July 10, 2019.
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3.3 Senders

Following evidence that users may change their behavior in order to generate more liking, com-

menting and sharing of the content they post,13 we assume senders derive utility from receivers

liking their content.14 In order to receive more likes sender j can increase her content quality by

setting a higher qj , resulting in a higher random quality Qj ≈ U [qj , qj + 1]. Higher quality comes

at a cost of kqj , making the sender’s utility

πjS = #(likes)− kqj (3)

An item can be liked by a receiver if it was observed by a receiver (was not filtered by the algorithm),

as well as provided enough utility to merit a like. We assume that a receiver picks one item from

the J items she reads and likes it if it passes a reservation utility r ≥ c. The restriction r ≥ c means

a sender can receive a like only if they generated net positive utility for the receiver. Since the

receiver picks an item randomly from her set of friends, having a larger set of friends means that

the sender will face stronger competition for receiving likes from receivers with more friends. In

addition, if receivers have a high bar for liking content, senders will have a tougher time generating

likes.

Summing up the likes from all receivers and adding the cost, we can write the sender’s payoff:

πjS = ϕ(1− α)N
Pr(Uj > r and Sj > t)

J
− kqj (4)

3.4 Timing

Figure 1 illustrates the timing of the game. First, the platform decides to invest in measuring Q and

D, and sets βQ and βD accordingly. Second, receivers pick ϕ to determine the number of friends

they have and senders choose their quality levels qj simultaneously. Third, the platform chooses

the threshold t for their algorithm. When the content is produced by the senders, the platform

filters some of the items based on the algorithm chosen. Finally, receivers decide how many content

items to read and like some of them, at which point payoffs are realized.

13See, e.g., “Society’s New Addiction: Getting a “Like” over Having a Life”, https://www.vitalsmarts.com/

press/2015/03/societys-new-addiction-getting-a-like-over-having-a-life/, accessed July 10, 2019.
14The online appendix shows that the results are robust to assuming senders receive utility from impressions instead

of “likes”.
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Figure 1: Timing of Actions
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<latexit sha1_base64="IImJkc6U9YgZOjLpW6YT/xTf4+c=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyXpxi4LblxWsA9oQ5lMbtqhk0mYmQgxFPwVNy4Ucet3uPNvnLZZaOuBgcM593DvnCDlTGnX/bYqG5tb2zvVXXtv/+DwyDk+6aokkxQ6NOGJ7AdEAWcCOpppDv1UAokDDr1gejP3ew8gFUvEvc5T8GMyFixilGgjjZyzNsmTKFKYSLBtk+TsEcKRU3Pr7gJ4nXglqaES7ZHzNQwTmsUgNOVEqYHnptoviNSMcpjZw0xBSuiUjGFgqCAxKL9YnD/Dl0YJcZRI84TGC/V3oiCxUnkcmMmY6Ila9ebif94g01HTL5hIMw2CLhdFGcc6wfMucMgkUM1zQwiVzNyK6YRIQrVpzDYleKtfXifdRt1z695do9ZqlnVU0Tm6QFfIQ9eohW5RG3UQRQV6Rq/ozXqyXqx362M5WrHKzCn6A+vzB1DulQU=</latexit><latexit sha1_base64="IImJkc6U9YgZOjLpW6YT/xTf4+c=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyXpxi4LblxWsA9oQ5lMbtqhk0mYmQgxFPwVNy4Ucet3uPNvnLZZaOuBgcM593DvnCDlTGnX/bYqG5tb2zvVXXtv/+DwyDk+6aokkxQ6NOGJ7AdEAWcCOpppDv1UAokDDr1gejP3ew8gFUvEvc5T8GMyFixilGgjjZyzNsmTKFKYSLBtk+TsEcKRU3Pr7gJ4nXglqaES7ZHzNQwTmsUgNOVEqYHnptoviNSMcpjZw0xBSuiUjGFgqCAxKL9YnD/Dl0YJcZRI84TGC/V3oiCxUnkcmMmY6Ila9ebif94g01HTL5hIMw2CLhdFGcc6wfMucMgkUM1zQwiVzNyK6YRIQrVpzDYleKtfXifdRt1z695do9ZqlnVU0Tm6QFfIQ9eohW5RG3UQRQV6Rq/ozXqyXqx362M5WrHKzCn6A+vzB1DulQU=</latexit><latexit sha1_base64="IImJkc6U9YgZOjLpW6YT/xTf4+c=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyXpxi4LblxWsA9oQ5lMbtqhk0mYmQgxFPwVNy4Ucet3uPNvnLZZaOuBgcM593DvnCDlTGnX/bYqG5tb2zvVXXtv/+DwyDk+6aokkxQ6NOGJ7AdEAWcCOpppDv1UAokDDr1gejP3ew8gFUvEvc5T8GMyFixilGgjjZyzNsmTKFKYSLBtk+TsEcKRU3Pr7gJ4nXglqaES7ZHzNQwTmsUgNOVEqYHnptoviNSMcpjZw0xBSuiUjGFgqCAxKL9YnD/Dl0YJcZRI84TGC/V3oiCxUnkcmMmY6Ila9ebif94g01HTL5hIMw2CLhdFGcc6wfMucMgkUM1zQwiVzNyK6YRIQrVpzDYleKtfXifdRt1z695do9ZqlnVU0Tm6QFfIQ9eohW5RG3UQRQV6Rq/ozXqyXqx362M5WrHKzCn6A+vzB1DulQU=</latexit><latexit sha1_base64="IImJkc6U9YgZOjLpW6YT/xTf4+c=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyXpxi4LblxWsA9oQ5lMbtqhk0mYmQgxFPwVNy4Ucet3uPNvnLZZaOuBgcM593DvnCDlTGnX/bYqG5tb2zvVXXtv/+DwyDk+6aokkxQ6NOGJ7AdEAWcCOpppDv1UAokDDr1gejP3ew8gFUvEvc5T8GMyFixilGgjjZyzNsmTKFKYSLBtk+TsEcKRU3Pr7gJ4nXglqaES7ZHzNQwTmsUgNOVEqYHnptoviNSMcpjZw0xBSuiUjGFgqCAxKL9YnD/Dl0YJcZRI84TGC/V3oiCxUnkcmMmY6Ila9ebif94g01HTL5hIMw2CLhdFGcc6wfMucMgkUM1zQwiVzNyK6YRIQrVpzDYleKtfXifdRt1z695do9ZqlnVU0Tm6QFfIQ9eohW5RG3UQRQV6Rq/ozXqyXqx362M5WrHKzCn6A+vzB1DulQU=</latexit>

Platform filters
items with Sj < t

<latexit sha1_base64="MAGIsPk1BSHdWyIH/7oBwsQD+Yg=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmImisyC6NFBYkNpYY5ZEAIbPDLIzMzG5m7moI4Q9s/BUbC42xtbXzbxwWCgVPMsnJOedm7j1BLLgBz/t2Miura+sb2c3c1vbO7p67f1A3UaIpq9FIRLoZEMMEV6wGHARrxpoRGQjWCIaXU79xz7ThkbqFUcw6kvQVDzklYKWue1oVBMJISxxyATaYy3Fg0uAHDgNcuOne4QsMha6b94peCrxM/DnJozmqXfer3YtoIpkCKogxLd+LoTMmGjgVbJJrJ4bFhA5Jn7UsVUQy0xmn90zwiVV62G5lnwKcqr8nxkQaM5KBTUoCA7PoTcX/vFYCYbkz5ipOgCk6+yhMBIYIT8vBPa4ZBTGyhFDN7a6YDogmNG3GluAvnrxM6qWi7xX961K+Up7XkUVH6BidIR+dowq6QlVUQxQ9omf0it6cJ+fFeXc+ZtGMM585RH/gfP4AjYKa/w==</latexit><latexit sha1_base64="MAGIsPk1BSHdWyIH/7oBwsQD+Yg=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmImisyC6NFBYkNpYY5ZEAIbPDLIzMzG5m7moI4Q9s/BUbC42xtbXzbxwWCgVPMsnJOedm7j1BLLgBz/t2Miura+sb2c3c1vbO7p67f1A3UaIpq9FIRLoZEMMEV6wGHARrxpoRGQjWCIaXU79xz7ThkbqFUcw6kvQVDzklYKWue1oVBMJISxxyATaYy3Fg0uAHDgNcuOne4QsMha6b94peCrxM/DnJozmqXfer3YtoIpkCKogxLd+LoTMmGjgVbJJrJ4bFhA5Jn7UsVUQy0xmn90zwiVV62G5lnwKcqr8nxkQaM5KBTUoCA7PoTcX/vFYCYbkz5ipOgCk6+yhMBIYIT8vBPa4ZBTGyhFDN7a6YDogmNG3GluAvnrxM6qWi7xX961K+Up7XkUVH6BidIR+dowq6QlVUQxQ9omf0it6cJ+fFeXc+ZtGMM585RH/gfP4AjYKa/w==</latexit><latexit sha1_base64="MAGIsPk1BSHdWyIH/7oBwsQD+Yg=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmImisyC6NFBYkNpYY5ZEAIbPDLIzMzG5m7moI4Q9s/BUbC42xtbXzbxwWCgVPMsnJOedm7j1BLLgBz/t2Miura+sb2c3c1vbO7p67f1A3UaIpq9FIRLoZEMMEV6wGHARrxpoRGQjWCIaXU79xz7ThkbqFUcw6kvQVDzklYKWue1oVBMJISxxyATaYy3Fg0uAHDgNcuOne4QsMha6b94peCrxM/DnJozmqXfer3YtoIpkCKogxLd+LoTMmGjgVbJJrJ4bFhA5Jn7UsVUQy0xmn90zwiVV62G5lnwKcqr8nxkQaM5KBTUoCA7PoTcX/vFYCYbkz5ipOgCk6+yhMBIYIT8vBPa4ZBTGyhFDN7a6YDogmNG3GluAvnrxM6qWi7xX961K+Up7XkUVH6BidIR+dowq6QlVUQxQ9omf0it6cJ+fFeXc+ZtGMM585RH/gfP4AjYKa/w==</latexit><latexit sha1_base64="MAGIsPk1BSHdWyIH/7oBwsQD+Yg=">AAACD3icbVC7TgJBFJ3FF+Jr1dJmImisyC6NFBYkNpYY5ZEAIbPDLIzMzG5m7moI4Q9s/BUbC42xtbXzbxwWCgVPMsnJOedm7j1BLLgBz/t2Miura+sb2c3c1vbO7p67f1A3UaIpq9FIRLoZEMMEV6wGHARrxpoRGQjWCIaXU79xz7ThkbqFUcw6kvQVDzklYKWue1oVBMJISxxyATaYy3Fg0uAHDgNcuOne4QsMha6b94peCrxM/DnJozmqXfer3YtoIpkCKogxLd+LoTMmGjgVbJJrJ4bFhA5Jn7UsVUQy0xmn90zwiVV62G5lnwKcqr8nxkQaM5KBTUoCA7PoTcX/vFYCYbkz5ipOgCk6+yhMBIYIT8vBPa4ZBTGyhFDN7a6YDogmNG3GluAvnrxM6qWi7xX961K+Up7XkUVH6BidIR+dowq6QlVUQxQ9omf0it6cJ+fFeXc+ZtGMM585RH/gfP4AjYKa/w==</latexit>

Platform sets t
<latexit sha1_base64="au+I4pZls6Wy08QLMn48N9saaDc=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5i4IjNsZEnixiUm8khgQjqlAw1tZ9Le0ZCRT3HjQmPc+iXu/BsLzELBkzQ5Oefe3NMTJoIb8Lxvp7C1vbO7V9wvHRweHZ+45dOOiVNNWZvGIta9kBgmuGJt4CBYL9GMyFCwbji9WfjdB6YNj9U9zBIWSDJWPOKUgJWGbrklCESxltgwMLgK1aFb8WreEniT+DmpoBytofs1GMU0lUwBFcSYvu8lEGREA6eCzUuD1LCE0CkZs76likhmgmwZfY4vrTLCNoB9CvBS/b2REWnMTIZ2UhKYmHVvIf7n9VOIGkHGVZICU3R1KEoFhhgvesAjrhkFMbOEUM1tVkwnRBMKtq2SLcFf//Im6dRrvlfz7+qVZiOvo4jO0QW6Qj66Rk10i1qojSh6RM/oFb05T86L8+58rEYLTr5zhv7A+fwBQJmTSQ==</latexit><latexit sha1_base64="au+I4pZls6Wy08QLMn48N9saaDc=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5i4IjNsZEnixiUm8khgQjqlAw1tZ9Le0ZCRT3HjQmPc+iXu/BsLzELBkzQ5Oefe3NMTJoIb8Lxvp7C1vbO7V9wvHRweHZ+45dOOiVNNWZvGIta9kBgmuGJt4CBYL9GMyFCwbji9WfjdB6YNj9U9zBIWSDJWPOKUgJWGbrklCESxltgwMLgK1aFb8WreEniT+DmpoBytofs1GMU0lUwBFcSYvu8lEGREA6eCzUuD1LCE0CkZs76likhmgmwZfY4vrTLCNoB9CvBS/b2REWnMTIZ2UhKYmHVvIf7n9VOIGkHGVZICU3R1KEoFhhgvesAjrhkFMbOEUM1tVkwnRBMKtq2SLcFf//Im6dRrvlfz7+qVZiOvo4jO0QW6Qj66Rk10i1qojSh6RM/oFb05T86L8+58rEYLTr5zhv7A+fwBQJmTSQ==</latexit><latexit sha1_base64="au+I4pZls6Wy08QLMn48N9saaDc=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5i4IjNsZEnixiUm8khgQjqlAw1tZ9Le0ZCRT3HjQmPc+iXu/BsLzELBkzQ5Oefe3NMTJoIb8Lxvp7C1vbO7V9wvHRweHZ+45dOOiVNNWZvGIta9kBgmuGJt4CBYL9GMyFCwbji9WfjdB6YNj9U9zBIWSDJWPOKUgJWGbrklCESxltgwMLgK1aFb8WreEniT+DmpoBytofs1GMU0lUwBFcSYvu8lEGREA6eCzUuD1LCE0CkZs76likhmgmwZfY4vrTLCNoB9CvBS/b2REWnMTIZ2UhKYmHVvIf7n9VOIGkHGVZICU3R1KEoFhhgvesAjrhkFMbOEUM1tVkwnRBMKtq2SLcFf//Im6dRrvlfz7+qVZiOvo4jO0QW6Qj66Rk10i1qojSh6RM/oFb05T86L8+58rEYLTr5zhv7A+fwBQJmTSQ==</latexit><latexit sha1_base64="au+I4pZls6Wy08QLMn48N9saaDc=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5i4IjNsZEnixiUm8khgQjqlAw1tZ9Le0ZCRT3HjQmPc+iXu/BsLzELBkzQ5Oefe3NMTJoIb8Lxvp7C1vbO7V9wvHRweHZ+45dOOiVNNWZvGIta9kBgmuGJt4CBYL9GMyFCwbji9WfjdB6YNj9U9zBIWSDJWPOKUgJWGbrklCESxltgwMLgK1aFb8WreEniT+DmpoBytofs1GMU0lUwBFcSYvu8lEGREA6eCzUuD1LCE0CkZs76likhmgmwZfY4vrTLCNoB9CvBS/b2REWnMTIZ2UhKYmHVvIf7n9VOIGkHGVZICU3R1KEoFhhgvesAjrhkFMbOEUM1tVkwnRBMKtq2SLcFf//Im6dRrvlfz7+qVZiOvo4jO0QW6Qj66Rk10i1qojSh6RM/oFb05T86L8+58rEYLTr5zhv7A+fwBQJmTSQ==</latexit>

Receivers set ';
Senders set qj

<latexit sha1_base64="ebWXqxfIQFTys+WGHBRN4vSTOI0=">AAACFHicbVDLSgMxFM3UVx1fVZdugq0gCGWmGwtuCm5c1kcf0A5DJr1to5nMmGQKpfQj3Pgrblwo4taFO//GTFtEWw8EDuecy809QcyZ0o7zZWWWlldW17Lr9sbm1vZObnevrqJEUqjRiEeyGRAFnAmoaaY5NGMJJAw4NIK789RvDEAqFokbPYzBC0lPsC6jRBvJz51cAQWWJrACjQvtAZFxnxXObPsaROdHv/dvC34u7xSdCfAicWckj2ao+rnPdieiSQhCU06UarlOrL0RkZpRDmO7nSiICb0jPWgZKkgIyhtNjhrjI6N0cDeS5gmNJ+rviREJlRqGgUmGRPfVvJeK/3mtRHfL3oiJONEg6HRRN+FYRzhtCHeYBKr50BBCJTN/xbRPJKHatGGbEtz5kxdJvVR0naJ7WcpXyrM6sugAHaJj5KJTVEEXqIpqiKIH9IRe0Kv1aD1bb9b7NJqxZjP76A+sj28SyZzg</latexit><latexit sha1_base64="ebWXqxfIQFTys+WGHBRN4vSTOI0=">AAACFHicbVDLSgMxFM3UVx1fVZdugq0gCGWmGwtuCm5c1kcf0A5DJr1to5nMmGQKpfQj3Pgrblwo4taFO//GTFtEWw8EDuecy809QcyZ0o7zZWWWlldW17Lr9sbm1vZObnevrqJEUqjRiEeyGRAFnAmoaaY5NGMJJAw4NIK789RvDEAqFokbPYzBC0lPsC6jRBvJz51cAQWWJrACjQvtAZFxnxXObPsaROdHv/dvC34u7xSdCfAicWckj2ao+rnPdieiSQhCU06UarlOrL0RkZpRDmO7nSiICb0jPWgZKkgIyhtNjhrjI6N0cDeS5gmNJ+rviREJlRqGgUmGRPfVvJeK/3mtRHfL3oiJONEg6HRRN+FYRzhtCHeYBKr50BBCJTN/xbRPJKHatGGbEtz5kxdJvVR0naJ7WcpXyrM6sugAHaJj5KJTVEEXqIpqiKIH9IRe0Kv1aD1bb9b7NJqxZjP76A+sj28SyZzg</latexit><latexit sha1_base64="ebWXqxfIQFTys+WGHBRN4vSTOI0=">AAACFHicbVDLSgMxFM3UVx1fVZdugq0gCGWmGwtuCm5c1kcf0A5DJr1to5nMmGQKpfQj3Pgrblwo4taFO//GTFtEWw8EDuecy809QcyZ0o7zZWWWlldW17Lr9sbm1vZObnevrqJEUqjRiEeyGRAFnAmoaaY5NGMJJAw4NIK789RvDEAqFokbPYzBC0lPsC6jRBvJz51cAQWWJrACjQvtAZFxnxXObPsaROdHv/dvC34u7xSdCfAicWckj2ao+rnPdieiSQhCU06UarlOrL0RkZpRDmO7nSiICb0jPWgZKkgIyhtNjhrjI6N0cDeS5gmNJ+rviREJlRqGgUmGRPfVvJeK/3mtRHfL3oiJONEg6HRRN+FYRzhtCHeYBKr50BBCJTN/xbRPJKHatGGbEtz5kxdJvVR0naJ7WcpXyrM6sugAHaJj5KJTVEEXqIpqiKIH9IRe0Kv1aD1bb9b7NJqxZjP76A+sj28SyZzg</latexit><latexit sha1_base64="ebWXqxfIQFTys+WGHBRN4vSTOI0=">AAACFHicbVDLSgMxFM3UVx1fVZdugq0gCGWmGwtuCm5c1kcf0A5DJr1to5nMmGQKpfQj3Pgrblwo4taFO//GTFtEWw8EDuecy809QcyZ0o7zZWWWlldW17Lr9sbm1vZObnevrqJEUqjRiEeyGRAFnAmoaaY5NGMJJAw4NIK789RvDEAqFokbPYzBC0lPsC6jRBvJz51cAQWWJrACjQvtAZFxnxXObPsaROdHv/dvC34u7xSdCfAicWckj2ao+rnPdieiSQhCU06UarlOrL0RkZpRDmO7nSiICb0jPWgZKkgIyhtNjhrjI6N0cDeS5gmNJ+rviREJlRqGgUmGRPfVvJeK/3mtRHfL3oiJONEg6HRRN+FYRzhtCHeYBKr50BBCJTN/xbRPJKHatGGbEtz5kxdJvVR0naJ7WcpXyrM6sugAHaJj5KJTVEEXqIpqiKIH9IRe0Kv1aD1bb9b7NJqxZjP76A+sj28SyZzg</latexit>

Platform selects algorithm;
Sets �Q and �D

<latexit sha1_base64="NKYXRh3J80kovv56FJ0QkwXJ8SY=">AAACInicbVBNSwMxEM367fpV9egl2Aqeyq4XK14EPXisaFVoS5lNp20wyS7JrFCKv8WLf8WLB0U9Cf4Y01rBrweBl/dmJpmXZEo6iqK3YGJyanpmdm4+XFhcWl4prK6duzS3AmsiVam9TMChkgZrJEnhZWYRdKLwIrk6HPoX12idTM0Z9TNsauga2ZECyEutwl5VAXVSq7mfgYIcB9VNraSe3g/DU/RCqZEgQeukxMG0v25HpVahGJWjEfhfEo9JkY1RbRVeGu1U5BoNCQXO1eMoo+YALEmh8CZs5A4zEFfQxbqnBjS65mC04g3f8kqb+4/6Y4iP1O8dA9DO9XXiKzVQz/32huJ/Xj2nTqU5kCbLCY34fKiTK04pH+bF29L6WFTfExA+Fym46IEFQT7V0IcQ/175LznfKcdROT7ZKR5UxnHMsQ22ybZZzHbZATtmVVZjgt2ye/bInoK74CF4Dl4/SyeCcc86+4Hg/QO2WKJs</latexit><latexit sha1_base64="NKYXRh3J80kovv56FJ0QkwXJ8SY=">AAACInicbVBNSwMxEM367fpV9egl2Aqeyq4XK14EPXisaFVoS5lNp20wyS7JrFCKv8WLf8WLB0U9Cf4Y01rBrweBl/dmJpmXZEo6iqK3YGJyanpmdm4+XFhcWl4prK6duzS3AmsiVam9TMChkgZrJEnhZWYRdKLwIrk6HPoX12idTM0Z9TNsauga2ZECyEutwl5VAXVSq7mfgYIcB9VNraSe3g/DU/RCqZEgQeukxMG0v25HpVahGJWjEfhfEo9JkY1RbRVeGu1U5BoNCQXO1eMoo+YALEmh8CZs5A4zEFfQxbqnBjS65mC04g3f8kqb+4/6Y4iP1O8dA9DO9XXiKzVQz/32huJ/Xj2nTqU5kCbLCY34fKiTK04pH+bF29L6WFTfExA+Fym46IEFQT7V0IcQ/175LznfKcdROT7ZKR5UxnHMsQ22ybZZzHbZATtmVVZjgt2ye/bInoK74CF4Dl4/SyeCcc86+4Hg/QO2WKJs</latexit><latexit sha1_base64="NKYXRh3J80kovv56FJ0QkwXJ8SY=">AAACInicbVBNSwMxEM367fpV9egl2Aqeyq4XK14EPXisaFVoS5lNp20wyS7JrFCKv8WLf8WLB0U9Cf4Y01rBrweBl/dmJpmXZEo6iqK3YGJyanpmdm4+XFhcWl4prK6duzS3AmsiVam9TMChkgZrJEnhZWYRdKLwIrk6HPoX12idTM0Z9TNsauga2ZECyEutwl5VAXVSq7mfgYIcB9VNraSe3g/DU/RCqZEgQeukxMG0v25HpVahGJWjEfhfEo9JkY1RbRVeGu1U5BoNCQXO1eMoo+YALEmh8CZs5A4zEFfQxbqnBjS65mC04g3f8kqb+4/6Y4iP1O8dA9DO9XXiKzVQz/32huJ/Xj2nTqU5kCbLCY34fKiTK04pH+bF29L6WFTfExA+Fym46IEFQT7V0IcQ/175LznfKcdROT7ZKR5UxnHMsQ22ybZZzHbZATtmVVZjgt2ye/bInoK74CF4Dl4/SyeCcc86+4Hg/QO2WKJs</latexit><latexit sha1_base64="NKYXRh3J80kovv56FJ0QkwXJ8SY=">AAACInicbVBNSwMxEM367fpV9egl2Aqeyq4XK14EPXisaFVoS5lNp20wyS7JrFCKv8WLf8WLB0U9Cf4Y01rBrweBl/dmJpmXZEo6iqK3YGJyanpmdm4+XFhcWl4prK6duzS3AmsiVam9TMChkgZrJEnhZWYRdKLwIrk6HPoX12idTM0Z9TNsauga2ZECyEutwl5VAXVSq7mfgYIcB9VNraSe3g/DU/RCqZEgQeukxMG0v25HpVahGJWjEfhfEo9JkY1RbRVeGu1U5BoNCQXO1eMoo+YALEmh8CZs5A4zEFfQxbqnBjS65mC04g3f8kqb+4/6Y4iP1O8dA9DO9XXiKzVQz/32huJ/Xj2nTqU5kCbLCY34fKiTK04pH+bF29L6WFTfExA+Fym46IEFQT7V0IcQ/175LznfKcdROT7ZKR5UxnHMsQ22ybZZzHbZATtmVVZjgt2ye/bInoK74CF4Dl4/SyeCcc86+4Hg/QO2WKJs</latexit>

Receivers read J items;
Random item liked if
provides more than r utility

<latexit sha1_base64="YweUEKFVtDt79960SvWOFmihE48="></latexit><latexit sha1_base64="YweUEKFVtDt79960SvWOFmihE48=">AAACOXicbVC7ahtBFJ114kc2saPEZZpLpEAqsesmBjcGNyaVYiLbIAsxO3vXumgey8xdgxD+LTf+i3SBNClsgtv8QEayivhxYODMOfcwc09RawqcZT+TlRcvV9fWN16lr99sbr1tvXt/HFzjFfaV086fFjKgJot9JtZ4WnuUptB4UkwO5v7JBfpAzn7naY1DI88tVaQkR2nU6h2hQppPQIyV0PnaAWI0YS9Nj6QtnVlcQdMES6AK0rT27oJKDGCcR+CxtNDxHWiYNPF01Gpn3WwBeEryJWmLJXqj1o+z0qnGoGWlZQiDPKt5OJOeSWm8TM+agLVUE3mOg0itNBiGs8Xml/ApKiVUzsdjGRbq/4mZNCFMTREnjeRxeOzNxee8QcPV7nBGtm4Yrbp/qGo0sIN5jVCSR8V6GolUnuJfQY2ll4pjlWksIX+88lNyvNPNs27+bae9v7usY0N8EB/FZ5GLL2JfHIqe6AslrsQvcSNuk+vkd/InubsfXUmWmW3xAMnff5eBqvo=</latexit><latexit sha1_base64="YweUEKFVtDt79960SvWOFmihE48="></latexit><latexit sha1_base64="YweUEKFVtDt79960SvWOFmihE48=">AAACOXicbVC7ahtBFJ114kc2saPEZZpLpEAqsesmBjcGNyaVYiLbIAsxO3vXumgey8xdgxD+LTf+i3SBNClsgtv8QEayivhxYODMOfcwc09RawqcZT+TlRcvV9fWN16lr99sbr1tvXt/HFzjFfaV086fFjKgJot9JtZ4WnuUptB4UkwO5v7JBfpAzn7naY1DI88tVaQkR2nU6h2hQppPQIyV0PnaAWI0YS9Nj6QtnVlcQdMES6AK0rT27oJKDGCcR+CxtNDxHWiYNPF01Gpn3WwBeEryJWmLJXqj1o+z0qnGoGWlZQiDPKt5OJOeSWm8TM+agLVUE3mOg0itNBiGs8Xml/ApKiVUzsdjGRbq/4mZNCFMTREnjeRxeOzNxee8QcPV7nBGtm4Yrbp/qGo0sIN5jVCSR8V6GolUnuJfQY2ll4pjlWksIX+88lNyvNPNs27+bae9v7usY0N8EB/FZ5GLL2JfHIqe6AslrsQvcSNuk+vkd/InubsfXUmWmW3xAMnff5eBqvo=</latexit>

Investing in curation is a costly long-term effort of the platform, which is why we assume it

is made before receivers connect to friends and senders generate their content. The analysis in

the online appendix shows that allowing the platform to set the threshold t before receivers make

their connection decisions does not change the results. Our assumption that senders and receivers

make their decisions simultaneously stems from the fact that it is unclear if senders respond in

their content creation to how many followers they have and how much competition they have, or

alternatively, that receivers elect to connect to senders that have a-priori set higher quality.

4 Analysis of Receivers and Platform Filtering

We first analyze the receivers’ decision making process and how the platform’s curation algorithm

affects these decisions. Therefore, in this section we assume that senders are passive and they all

set a baseline quality of qj = q. After an analysis of a benchmark case where the platform does not

apply algorithmic filtering, we focus on analyzing the three cases mentioned above (PA, QA and

DA).

4.1 Benchmark

We begin with the case where the platform does not use any filtering algorithm. A prototypical

receiver’s expected payoff is

E(πR) = J · (E(Uj |ϕ)− c) (5)

Note that the receiver cannot distinguish between senders and the expected utility is the same

for all messages before reading, hence the receiver either reads content from no friend or from all
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friends. Given that E(Uj |ϕ) = q + 1
2 − ϕ, the receiver will not read any content if c− q > 1/2− ϕ,

resulting in J = 0. Otherwise, the receiver will set J = ϕαN and read content from all friends.

In the first stage, when the receiver decides on ϕ, the receiver solves:

max
ϕ

E(πR) = max
ϕ

ϕαN

(
q − c+

1

2
− ϕ

)
(6)

The interior solution is ϕ∗NA = q−c
2 + 1

4 . Furthermore, if c − q > 1/2 receivers will not connect to

anyone and set ϕ∗NA = 0, whereas if c−q < −3/2, receivers will connect to everyone and set ϕ∗NA =

1. The following proposition summarizes the main implications for the benchmark case: content

quality and content consumption costs have opposite effects on the number of friends a receiver

chooses. When quality is high, receivers are more open to friendships expecting higher content.

However, a high consumption cost has the opposite effect, reducing the number of connections in

the network.

Proposition 1. The number of friends receivers choose is increasing in the content quality, but is

decreasing in the cost of content consumption.

A particular example that we will use for comparison between the cases is that of c = q, when

we get ϕ∗NA = 1/4. In this case the majority of friends the receiver will connect to will be her closer

friends, with distances lower than 1/2.

4.2 Perfect Algorithm

We now analyze the case of the perfect algorithm (PA) which fully observes and filters based on

both message quality and sender distance. Starting at the last stage, recall that the platform

intends to maximize receiver payoff. With a given t threshold, the payoff is

E(πR) = J · Pr(Uj > t)E(Uj − c|ϕ,Uj > t) (7)

As in the benchmark case, the receiver cannot distinguish between different content pieces before

reading so she either reads none or all. Thus the platform simply maximizes Pr(Uj > t)E(Uj −

c|ϕ,Uj > t), which reaches its maximum at t∗ = c. The intuition is fairly straightforward: given

that the platform can perfectly observe the utility that the receiver will get, it filters out all content

that would decrease the receiver’s total payoff. Solving for the receiver’s optimal friendship choice,

we derive the following proposition:
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Proposition 2. Under the perfect algorithm:

• When −1 < c − q < 1, receivers set ϕ∗ = 1+q−c
2 . When c − q ≤ −1 receivers connect to all

senders in the network. When c− q ≥ 1 receivers do not connect to any sender.

• The proportion of content filtered out by the algorithm increases in content consumption cost

and decreases in content quality.

The proposition tells us that the algorithm increases consumer utility by filtering out content

that could have a negative impact on total consumer utilities. Interestingly, the algorithm also in-

centivizes receivers to connect to more friends than without an algorithm. In particular, consumers

may have an incentive to connect to all senders when the cost is low enough compared to quality.

The reason is that consumers can now afford to risk getting content from friends who are at a larger

social distance, because the algorithm offers insurance against mismatching content.15

To illustrate our results better, we present the solution in the case of c = q (the solution of the

general case is presented in the Appendix). For c = q, we get

Pr(Uj > c)E(Uj − c|ϕ,Uj > c) =


1
6

(
4ϕ2 − 6ϕ+ 3

)
ϕ < 1

2

1
12ϕ ϕ ≥ 1

2

(8)

Thus, in this case, the receiver maximizes

max
ϕ

E(uR) = max
ϕ

ϕαN Pr(Uj > c)E(Uj − c|ϕ,Uj > c)|c=q (9)

yielding the solution of ϕ∗PA = 1/2 which is clearly higher than the benchmark case of ϕ∗NA = 1/4.

As opposed to (6), the benefit from increasing the number of friends has a positive quadratic term

in the top line of (8), making it worthwhile to set a higher ϕ than in the NA case.

Another good way to measure the algorithm’s behavior and compare the different cases is to

calculate the level of filtering, which is the probability that a piece of content from a random friend

is hidden from the receiver. Naturally, with no filtering, this probability is 0. In case of the perfect

algorithm, we get p∗PA = Pr(Uj ≤ c) = 1/2 in the focal case of c = q.

It is interesting to contrast this result to the no algorithm result. Although the receivers double

their number of friends with the perfect algorithm, half the content is filtered in this focal case.

15The tie-breaking rule where receivers do not connect if they are indifferent leads to the interior solution. The

results are robust with the milder assumption that receivers connect with probability lower than 1 when indifferent.
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The ratio of the amount of content consumed under the no-algorithm case to the perfect algorithm

is 1, which means that the perfect algorithm does not effectively increase content consumption

when c = q. However, the algorithm does make a difference in the average distance of a consumed

message as we derive later in Section 5.

4.3 Quality Algorithm

In case of the quality algorithm (QA), the platform maximizes

E(πR) = J · Pr(Qj > t)E(Uj − c|ϕ,Qj > t) (10)

As we derive in the proof, Pr(Qj > t)E(Uj − c|ϕ,Qj > t) reaches its maximum at t∗ = c + ϕ. As

long as q < t∗ < q + 1, we obtain

Pr(Qj > t∗)E(Uj − c|ϕ,Qj > t∗) =
1

2
(c− q + ϕ− 1)2 (11)

Solving the receiver’s maximization problem, we get

ϕ∗QA =
q − c+ 1

3
, p∗QA =

2(c− q) + 1

3
(12)

for −1/2 < c− q < 1, yielding the following result.

Proposition 3. Under the quality algorithm:

• Receivers connect to more senders than without a filtering algorithm if c− q > −1/2. When

c− q ≤ −1/2 the quality algorithm does not filter any items and the receivers connect to the

same number of friends as with the no algorithm case.

• Receivers connect to fewer friends and receiver utility is lower than under the perfect algo-

rithm.

The proposition demonstrates that the quality algorithm is generally a less effective solution

than the perfect algorithm in increasing receiver utility and connectivity. However, consumers

receive enough assurance from the algorithm to connect to more friends than without an algorithm

as long as c− q is not too low. The perfect algorithm is more efficient than the quality algorithm

in both increasing connectedness as well as increasing receiver utility. The level of filtering also

increases as the cost grows, offering a more selective experience to consumers, but due to the

imperfect filtering it cannot keep up with the reduction in expected utility, thereby decreasing

consumer incentives to connect to friends.
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4.4 Distance Algorithm

In case of the distance algorithm (DA), the platform maximizes

E(πR) = J · Pr(−Dj > t)E(Uj − c|ϕ,−Dj > t) = J · Pr(Dj < −t)E(Uj − c|ϕ,Dj < −t) (13)

As we derive in the proof, Pr(Dj < −t)E(Uj−c|ϕ,Dj < −t) reaches its maximum at t∗ = c−q− 1
2 .

Solving the receiver’s maximization problem, we get the following result.

Proposition 4. Under the distance algorithm:

• Receivers set ϕ∗DA = q−c
2 + 1

4 , when −3/2 < c−q < 1/2. When c−q ≤ −3/2 receivers connect

to all senders in the network. When c− q ≥ 1/2 receivers do not connect to any sender.

• No content is filtered out by the algorithm in equilibrium.

Interestingly, the distance algorithm does not encourage more connectedness in the network

than in the benchmark NA case. The reason is that since the algorithm is set to filter out all

content with some distance above a threshold, there is no value of adding friends with higher

distances, which results in no actual content being filtered out in equilibrium.

5 Polarization and Filter Bubbles

By employing curation algorithms social networks found themselves in a controversy regarding the

diversity of content each consumer reads. The claim is that by catering to the preferences of their

users, social networks effectively limit the exposure to new ideas, decrease heterogeneity of content

consumed and increase online polarization.

Since we make a distinction between exogenous polarization caused by the preferences of re-

ceivers for content that matches their tastes and increased polarization because of a filtering algo-

rithm (a filter bubble), we can compare the equilibrium average distances of consumed content in

our model to understand the impact of curation algorithms on polarization. On one hand, curation

increases connectivity, which may lead to potentially more diverse content being consumed in terms

of distance from the receiver. On the other hand, curation filters more content, which may lower

the actual distance of consumed content. If in equilibrium receivers consume content which is more

distant, then we say that content polarization has decreased in the market.

16



Let d denote the expected distance of an item that a receiver reads in equilibrium. We obtain

the following results:

Corollary 5. When c − q is low, dQA = dNA = dDA > dPA. For intermediate values of c − q,

dPA > dQA ≥ dNA = dDA, and for high values of c− q, dQA = dPA > dNA = dDA.

The results clearly show the different ways the three algorithms affect content available to

readers. An immediate implication of the corollary is that when the quality is high (c− q is low),

the average distance of content seen by the receiver under all algorithms is higher than that of

the perfect algorithm, resulting in more diverse content being displayed and lowered polarization.

The intuition is that above a certain level of quality, receivers have connected to many senders

under all algorithms and except for the perfect algorithm, none of them filter any content, resulting

in higher average distances. The perfect algorithm, however, still filters content with quite high

quality, trying to compensate for the increased distances, yielding lower average distance observed

by the receiver.16

When quality is low, it is interesting that focusing on improving the user’s experience and

utility increases average distances and content diversity compared to the no algorithm case. This

is a result of the increased connectivity achieved by these algorithms compared to the no algorithm

case, leading to a shift in the distribution of distances further and allowing the receiver to experience

more diverse content.

Figure 2 compares the impact of changes in c− q on the connectivity of the receivers under the

different algorithms (top panels) and the average distance of content consumed by the receiver with

the different algorithms (bottom panels). To emphasize the differences between the algorithms we

graph the absolute connectivity and average distances (left panels) and the difference of the PA

and QA cases from the NA cases (right panels).

In the top panels we can see that both the perfect and quality algorithms generally increase

connectivity compared to the new algorithm, and that this effect is stronger when the quality of

content q is low, or the cost of consuming content c is high. Despite the increased connectivity, the

bottom panels show that the filtering effect of the algorithms decreases the difference in average

distances compared to the differences in connectivity, and in the case of the perfect algorithm, this

16The online appendix extends this analysis to heterogeneous levels of connectivity and lower levels of connectivity.

The results remain unchanged.
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may result in shorter average distances to senders, a characteristic of increased polarization because

of a filter bubble.

The pattern we find sheds lights on which algorithms may be responsible for filter bubbles.

The popular argument that filtering always causes these bubbles may not hold generally. Our

results show that only the perfect algorithm decreases the average distance and only under special

circumstances: when quality is high compared to consumption costs and when consumers connect to

many senders to start with. In the typical situations—with relatively low quality senders—filtering

algorithms tend to increase the average distance between a sender and receiver of a consumed

message, and thus decrease polarizarion.

Figure 2: Connectivity and Polarization
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Top: Receiver connectivity ϕ as a function of c− q; Bottom: average distance d.

Left: function values; right: difference from the no algorithm case.
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6 Analysis of Senders

In this section we analyze the senders’ behavior. The decision they make is the quality level

that they set to shift the distribution of message quality available to receivers. As all senders

are identical we are looking for a symmetric equilibrium where each sender sets the same level of

quality. Throughout the section, we assume that α = 1/2 for the sake of parsimony, implying that

the number of senders equals the number of receivers. The online appendix extends the analysis to

users who can endogenously choose α.

6.1 No curation

We start with the benchmark case of no curation. When examining sender j’s decision, we denote

the quality level set by her as qj , while all other senders set q−j . Let G(·) denote the CDF of the

utility distribution Uj = Qj − Dj when qj = 0 and let g(·) denote its PDF.17 In the absence of

curation, sender j maximizes her expected payoff as follows:

max
qj

E(πiS) = max
qj

ϕN

2
· 1−G(r − qj)

J
− kqj . (14)

When receivers find consuming messages worthwhile they set J = ϕN/2, hence the first order

condition becomes:

g(r − qj) = k (15)

Since the second order conditions of the maximization problem hold only on the increasing parts

of g(·), we find that the best response quality of a sender (q∗) to the share of friends each receiver

has (ϕ) is

q∗(ϕ) = r + 2ϕ(1− k) (16)

We also assume 0 ≤ k < kNA to make sure that the local maximum obtained above is also a global

maximum.18 When k ≥ kNA the equilibrium quality level is q∗ = 0.

It is apparent that the best-response quality increases in r, the threshold set by the receiver,

and it naturally decreases in k, the cost of quality.

17Exact formulas for the CDF and PDF are given at the beginning of the Appendix.
18The value is fully derived in the Appendix.
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To derive the equilibrium, we use the formula from the previous section, where we determined

that the receiver sets ϕ = 2(q−c)+1
4 . Substituting this into (16), we get a quadratic equation for ϕ

with the following solutions:

ϕ∗ =


1 0 < k ≤ 2(r−c)+1

4

1+2(r−c)
4k

2(r−c)+1
4 < k < kNA

(17)

The strategic interaction between quality and connectivity drives up the number of friends

receivers pick to the maximum level if costs are below a certain threshold. As it becomes costlier

to produce quality the connectivity declines. A comparative statics analysis reveals the following:

Proposition 6. Both q∗ and ϕ∗ increase in r and decrease in c and k.

Proposition 6 shows that increasing the minimum utility r required for a like will increase the

number of friends a receiver chooses to connect to, as well as will increase the quality of content

produced by the senders. In this sense, being more selective helps the receivers and improves the

quality of content on the platform. This results in the receivers being less careful about selecting

their friends, since giving likes more carefully helps align the senders to produce higher quality

content.

When the cost of consuming content c is increasing, the receiver decreases the amount of friends

she connects to, because this will yield a lower distance from the senders on average, and will give

a higher probability of consuming content whose utility passes the minimal cost facing the receiver.

As a result the sender will face less competition in the market, and the quality will decrease. Finally,

when k increases, senders face a higher cost of producing quality and will lower the quality they

choose to provide.

It is interesting to note that the positive interaction between quality and connections hurts

senders in general. While more connections provide senders more opportunities to reach an au-

dience, the limited rewards from a single receiver cancels this benefit out. At the same time,

increased connectivity results in potentially larger social distances forcing senders to work harder

and to invest more in quality in order to overcome the distances.
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6.2 Perfect Algorithm

As we have shown in Section 4, the perfect algorithm filters out any messages that yield negative

payoff to a receiver. Hence if the difference of the realized quality and the realized distance is less

than the cost of consuming a message, the receiver does not see or read the message. Each message

is thus potentially being filtered out with a probability depending on the quality level chosen by the

sender. The choice set of messages the receiver can like changes depending on the realized qualities

and distances yielding an a-priori random number of messages to choose from. The probability

that a given sender who sets quality q is filtered out is G(c − q). We thus obtain the payoff for a

given sender j, when all other senders set quality q−j as follows:

max
qj

ϕN

2
· (1−G(r − qj))

J−1∑
L=0

[
1

L+ 1

(
J − 1

L

)
(1−G(c− q−j))LG(c− q−j)J−1−L

]
− kqj (18)

The first order condition is thus

ϕN

2
· g(r − qj))

J−1∑
L=0

[
1

L+ 1

(
J − 1

L

)
(1−G(c− q−j))LG(c− q−j)J−1−L

]
= k (19)

To obtain a tractable formula we assume that N →∞, and conduct all further analysis involving

senders in the limit. The first order condition becomes

g(r − qj)
(1−G(c− q−j))

= k. (20)

Compared to the benchmark case, senders have a higher incentive to invest in quality for a fixed

like threshold, r. This is driven by the reduced competition due to filtering. On the other hand,

the filtering threshold increases in the cost c and potentially lowers incentives to invest in quality.

To fully understand the combination of these forces, we determine the equilibrium quality level.

As we show in the Appendix, senders will always set q∗j ≥ r. Substituting qj = q−j = q∗ into (20),

and solving for the equilibrium, we obtain the equilibrium quality:19

q∗ =


2(1− k) + r 0 < k ≤ r−c

2

1+(2+c)k−
√

2k(c+2k−r)+1

k
r−c
2 < k < kPA

(21)

Analyzing the result above we obtain the following results:

Proposition 7.

19The value of kPA is derived in the Appendix.
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• ϕ∗ = 1 and the receivers connect to all senders.

• q∗ increases in r and in c and decreases in k.

• For low values of k senders set the same quality and obtain the same payoff as without filtering.

• For intermediate values of k, senders set a higher quality and obtain a higher payoff than

without filtering.

• For high values of k, senders set a higher quality than without an algorithm, but obtain a

lower payoff when r − c is low.

The first part of the proposition states that receivers connect in equilibrium to all senders.

Given the full insurance the platform provides against low utility items, there is no risk for the

receivers now and they might as well connect to all senders. That is, the result we obtained by just

examining receivers is reinforced by the presence of active senders. The perfect algorithm induces

receivers to connect to more senders and this incentivizes senders to invest in content quality,

further increasing the willingness of senders to establish connections. In reality, users on social

networks do not connect to all other users, of course. This is an artifact of our assumption that the

platform can perfectly observe utilities and filter out negative utility items. A weaker assumption

where the platform can only observe the utility with some noise would lead to an outcome where

the equilibrium connectivity is not full. Moreover, the online appendix analyzes a model with

connectivity heterogeneity where not all receivers connect to all senders. The results of the analysis

on the impact of filtering on connectivity and filter bubbles are unaffected.

The second part of the proposition shows that r and k affect the amount of effort spent on

quality in a similar way to the case of no curation. More demanding readers generally entice

senders to produce higher quality as long as the cost is not high.

Interestingly, the second part also reveals that increasing receivers’ cost has the opposite effect

compared to without an algorithm. This parameter is an important component of our model as the

basic idea behind curation is to prevent readers from spending valuable time on content yielding

low utility. As our results show, curation has a double positive effect on receivers. In addition to

the baseline effect of filtering out low quality content, it also incentivizes senders to create higher

quality content. Higher costs increase the pressure on senders, since the probability of being filtered
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out increases with c. Therefore, senders have to spend more effort on quality to avoid being hidden

from receivers.

The remaining results establish a comparison between the case of no filtering and perfect filter-

ing. While qualities and sender payoffs are equal between the two cases when the cost of quality

is low, filtering increases quality efforts when k is high enough as discussed above. This threat of

being filtered out makes senders increase quality over and above what they would set when the

only incentive is to pass a reader’s like threshold. The result also shows a potentially unintended

consequence: together with the increased effort comes a reduced payoff for senders for high values

of k when r− c is low enough. While a higher quality results in more likes in total, the effort is not

worth it. But interestingly, filtering makes it more appealing for senders to spend more on quality

because they expect fewer competitors for a given receiver due to curation. That is, senders are

not driven to spend extra by the direct effect of filtering, but by the indirect, competitive effect

akin to a prisoner’s dilemma.

6.3 Quality Algorithm

As the quality algorithm filters out any message with quality less than t∗, senders can increase their

base quality qj to make sure their items are not being filtered by the platform. Likewise, because

receivers only like content above the threshold r, a sender can increase their quality qj to generate

items with utility that passes this threshold.

Using the result from Section 4, suppose the platform sets t∗ = c + ϕ as the threshold for

filtering quality, then the probability that an item from any senders passes filtering is Pr(Q >

t∗) = min(q + 1 − t∗, 1). In order to receive a like, sender j’s item needs to pass the quality filter

as well as the utility threshold r set by the receiver. We denote as P (qj) = Pr(Qj > t∗, Uj > r)

the probability of item j not being filtered for quality and being eligible for receiving a like.20 The

sender then maximizes

max
qj

P (qj)

min(q−j + 1− t∗, 1)
− kqj (22)

Examining the profit function and its first and second order conditions, the profit is locally

maximized only when qj ≥ t∗. As we show in the Appendix, when r is high, the qualities coincide

20The full derivation is available in the Appendix.
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with the case of the no algorithm. For intermediate values of r, however, solving for the first order

condition when assuming that in equilibrium qj = q∗, we obtain21

q∗ =


r + 2ϕ(1− k) 0 < k ≤ 1

2 + r − c

c+ ϕ 1
2 + r − c < k ≤ kQA

(23)

Analyzing the equilibrium quality level and connectivity, we find that

ϕ∗QA =


1 0 < k ≤ 2(r−c)+1

4

1+2(r−c)
4k

2(r−c)+1
4 < k ≤ 1

2 + r − c

1
2

1
2 + r − c < k ≤ kQA

(24)

The following proposition summarizes the results.

Proposition 8. Under the quality algorithm:

• No filtering takes place in equilibrium.

• When k is low, the equilibrium behaves as in the no algorithm case. q∗ increases in r and

decreases in k and c.

• When k is high, senders set a higher quality in equilibrium, yet obtain a lower payoff compared

to without filtering.

The first part of the proposition finds that quality filetring is effective in the sense that senders

always set a high enough quality to make sure their content is not filtered. This effectively increases

the cost of quality facing the senders.

The second part finds similar effects for r, k and c as in the no algorithm case, and generally

shows that when quality is cheap, quality filtering is not necessary.

The third part shows that quality filtering results in higher equilibrium quality levels for high

quality cost k but a lower profit for the senders. In such cases, quality filtering acts as a threat

for the senders to maintain a higher quality even if the cost is too high, and as a result, senders

maintain a fixed quality level above the level they would have set without filtering. This enhanced

quality causes higher connectivity in equilibrium, but results in lower payoff for senders because of

21The value of kQA is derived in the Appendix.
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additional costs faced by the senders. The intuition is that the quality filter puts a sharp bound

below which the senders face no competition, and as such, moving from setting a quality level below

t∗ to above t∗ has a larger increase compared to the case of no curation. This results in a bigger

incentive for each sender to pass the threshold as compared to before.

6.4 Distance Algorithm

As the results in Section 4 have shown, using a distance algorithm does not cause receivers to

change their connectivity, which results in no filtering taking place for any value of q that may be

set by the senders.

Consequently, since senders can only affect the quality of the content they create, when facing

a distance filtering algorithm senders have no incentive to invest in quality differently than in the

case of no filtering. The conclusion is that the results of Proposition 6 apply to this case as well.

7 Platform Choice and Filter Bubbles in Equilibrium

After analyzing the Receiver and Sender’s choices for connectivity and quality, we now analyze the

platform’s equilibrium algorithm choice, and verify that our previous results regarding filter bubbles

hold in the full equilibrium with endgenous actions by the receviers, senders and the platform.

7.1 Equilibrium Algorithm Choice by the Platform

First, we show that the perfect algorithm maximizes receiver utility when qualities are exogenous.

Second, we derive the equilibrium choice by the platform given the implementation costs.

Finding the platform’s equilibrium choice with endogenous Senders turns out to be intractable.

Consequently, we prove that the algorithm choice results do hold in a full equilibrium when the

platform can pick between the perfect (βQ = βD = 1), quality (βQ = 1, βD = 0) and distance

(βQ = 0, βD = 1) algorithms. We further provide numerical evidence that these three algorithms

are the only choices the platform will consider when r = c = 0, implying the results will follow

through when βQ and βD are not constrained.

When q is exogenous and βQ and βD can be set arbitrarily, the platform sets

t∗ = arg max
t

J · Pr(Sj > t)E(Uj − c|ϕ, Sj > t)
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while the receiver sets ϕ∗ = arg maxϕ J · Pr(Sj > t∗)E(Uj − c|ϕ, Sj > t∗).

The derivation in the Appendix shows how the platform will set a different filtering threshold

t∗ depending on the values of c, q, ϕ, βQ and βD. Taking into the account the utility maximizing

behavior of the receiver and picking βQ and βD that will maximize the equilibrium receiver’s utility,

we obtain the following results:

Proposition 9.

• The algorithm that maximizes receiver’s utility has βQ = βD. Specifically, the PA algorithm

with βQ = 1 and βD = 1 maximizes the receiver’s utility.

• There are thresholds such that the platform will curate using the PA algorithm when both

γQ + γD ≤ γQ+D and γD ≤ γD, will use the QA algorithm when γQ ≤ γQ and γD > γD, and

will forgo any algorithm, when both γQ + γD > γQ+D and γQ > γD.

• Specifically, when q = c, the platform will choose the PA algorithm iff γQ + γD ≤ αN
48 and

γD ≤ αN
108 , it will pick the QA algorithm if γQ ≤ 5αN

432 and γD > αN
108 , and no algorithm

otherwise.

Because the receiver and the platform aim to maximize the same value (receiver’s utility), once

an algorithm has been implemented, they do not have misaligned incentives. Thus, when βQ and

βD are set, the receiver adjusts the connectivity ϕ which in turn changes the equilibrium filtering

threshold t. Intuitively, filtering based on better information results in higher receiver utility hence

the perfect algorithm maximizes the total receiver utility.

Taking into account the costs of implementing the different algorithms, the second and third

items describe the platform’s choice given these costs as illustrated by Figure 3. The perfect

algorithm is preferred when the sum of both costs is sufficiently low. However, if the cost of

implementing the distance is relatively high within the sum, the platform prefers to switch to the

quality algorithm. This latter algorithm is chosen as long as the cost of implementing quality

filtering is not too high, but that of distance filtering is high. If both costs are high, no algorithm

is chosen.

Finally, note that the distance algorithm is never picked because it does not improve customer

satisfaction, but comes at a cost. It is interesting to compare the magnitudes of the thresholds

when q = c. In this case, the threshold for the sum of costs is γQ+D = αN
48 with the threshold
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Figure 3: Algorithm choice of platform depending on implementation costs

separating the QA and PA choices is γD = 4
9γQ+D, while the threshold that separates the QA

choice from NA is γQ = 5
9γQ+D. This implies that if we were to restrict the two costs per sender

to be the same, i.e. γ = γD = γQ, the platform’s choice is PA for a low cost, QA for intermediate,

and NA for high.

The following corollary establishes that the results from Proposition 9 hold in the full equilibrium

(that endogenizes the Sender’s quality decision) when r = c:

Corollary 10. When r = c, in equilibrium with endogenous actions by senders and receivers,

πPAR ≥ πQAR ≥ πNAR .

The corollary shows that in equilibrium the perfect algorithm achieves the highest receiver

utility, followed by the quality algorithm and then followed by not using an algorithm. As this

is the same condition which is necessary and sufficient to prove Proposition 9, the results of the

proposition also apply in the full equilibrium, although the values of the cost thresholds γQ+D,γQ

and γD, will be different.

To provide further evidence about the equilibrium choice of algorithm by the platform, we turn

to numerical analysis. The online appendix details the numerical approach and the limitations

which allow us to find a solution for the cases of r = c = 0. As part of the analysis, we show that

any scoring algorithm with parameters (βQ, βD) can be represented by the one-dimensional ratio

β = βD
βQ

. Thus, β = 1 is the perfect algorithm while β = 0 is the quality algorithm.
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Figure 4 illustrates the utility of the receiver for different values of k and β. The figure shows

that the results from Proposition 9 hold such that the receiver’s utility is maximized when β = 1

and the platform uses the perfect algorithm. Interestingly, there are cases (when k is high) where

the quality algorithm yields higher utility than an algorithm that uses partial weight (β < 1) for

the distance D.

Figure 4: Receiver utility in full equilibrium when r = c = 0 for different values of β and quality

cost k
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7.2 Equilibrium Effect on Filter Bubbles and Sender Payoffs

In this section we compare the equilibrium outcomes on connectivity, quality, payoffs and filtering,

to illustrate the main results from our analysis in equilibrium.

Figure 5 illustrates the equilibrium values of q∗ and ϕ∗ as functions of k when fixing c = 0.35

and r = 0.4.22 Comparing the top and bottom left panels, we notice the correlation between the

quality and connectivity, which is a result of the strategic complementarity between quality and

22These values were chosen because they allow a wide range of k values where the equilibrium is not a corner

solution, but the same general pattern holds for all parameter values.
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connectivity. We also see that when k is low, the filtering algorithms do not make a difference as

senders elect to produce high quality content which in turn entices receivers to connect to all senders.

For high values of k, the quality algorithm leads to somewhat higher quality and connectivity levels

compared to the case of no algorithm or the distance algorithm, but the perfect algorithm generally

achieves higher qualities and full connectivity. The right panels illustrate how increases in k cause

an increase in the difference of both quality and connectivity as compared to the no algorithm case.

Figure 5: Equilibrium Quality and Connectivity
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Top: Equilibrium sender quality q∗; Bottom: receiver connectivity ϕ∗.

Left: function values; right: difference from the no algorithm case.

k < k ≈ 0.727, c = 0.35 and r = 0.4.

Focusing on filter bubbles, we can also compare the equilibrium average distance d of content

receivers consume. For the NA and QA cases, the average distance is equal to the equilibrium

connectivity ϕ∗. When comparing the NA and PA cases, we arrive at the following result:

29



Corollary 11. There exists a r−c
2 + 1

4 < k < min(kPA, kNA) s.t. if 0 < k < k then dNA > dPA.

When k > k, dNA < dPA.

The corollary shows that the findings of corollary 5 hold in equilibrium, and that for low values

of k, the perfect algorithm will increase polarization and create a filter bubble where receivers are

exposed to less diverse content compared to without an algorithm.

Finally, in Figure 6 we illustrate the payoffs achieved by the senders in the conditions of Figure 5.

We see that the PA profit declines continuously in the cost of quality k, while under the no algorithm

case and quality algorithm the profit is initially lower than the PA profit, but as it declines slower

with k, for high values of k it is essentially higher. This is a result of the higher quality created by

the perfect algorithm, which eventually costs too much and yields lower profit. In summary, these

figures illustrate our main results well. Filtering algorithms force senders to create higher quality

content especially in the case of the perfect algorithm. However, unless content creation costs are

low, this is a burden for senders, lowering their profits and hindering their potential willingness to

enter the market.

Figure 6: Sender Profit
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8 Discussion and Conclusion

The implementation of curation algorithms by social platforms raises questions about their impact

on content diversity experienced by users. If filter bubbles are indeed a result of using curation

algorithms, platforms should carefully consider which algorithms best serve their users. As an

example, strong curation may allow “fake news” to spread since they match the preconceived

notion of some readers, but they never reach other readers who are able to flag them as fake.

Despite the important implications, arguments surrounding these algorithms tend to be sim-

plistic and ignore many facets of this complicated ecosystem. The research about which specific

details of algorithms have the most impact is limited. One contributor is the fact that platforms are

tight lipped about the details of their curation. Media interviews with the platforms23 commonly

documented the following features as impacting the prominence of a content item being displayed

to readers: (1) media richness - whether the item is an image, or has a video attached to it, (2)

recency of item, (3) engagement of other users with this item, (4) engagement of a user with similar

past items and, (5) the strength of connection between sender and receiver in terms of past engage-

ment with past items. Our model advances this field of research by including creators of content

(senders), consumers of content (receivers) and a curating platform. The platform can measure

the quality of content, similarly to the richness of the media aspect, and the relationship between

sender and receiver, as measured by their social distance. The analysis in the online appendix

also considers the engagement of other users with each item. As a result, our analysis provides

clear theoretical predictions about the impact of curation algorithms on network structure and user

behavior. These predictions can form a basis for further empirical work that examines these issues.

The results show that product design choices behind curation algorithms have non-trivial im-

plications. Algorithmic curation can alter the structure of the network as well as the quality and

diversity of content on a social network. Curation may cause receivers to become less selective in

choosing whom to follow, while senders in general will have to increase the quality of their con-

tent when the cost of producing quality is high. Furthermore, we find that algorithms such as

23E.g., http://www.slate.com/articles/technology/cover_story/2017/03/twitter_s_timeline_algorithm_

and_its_effect_on_us_explained.html for Twitter, https://techcrunch.com/2018/01/11/facebook-time-well-

spent/ for Facebook, and https://techcrunch.com/2018/06/01/how-instagram-feed-works/ for Instagram, Ac-

cessed July 14, 2019.
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the perfect algorithm may increase polarization of matched content between receivers and senders

and create filter bubbles, while other algorithms (such as the QA) may decrease said polarization.

Consequently the popular arguments that algorithms by design increase polarization because they

over-match content to user preferences seem to be inflated.

This non-monotonic impact of the different algorithms may explain why in some cases it is ob-

served that introducing algorithms encourages higher quality items on networks and more pluralistic

content consumed by different receivers, while in other cases the effects are the opposite. Taking

these potential effects into account should help platforms in the process of making modifications

to the user-experience they offer as part of their product design process.

Our analysis of the two-sided market required simplifying assumptions and is naturally not

without limitations. These simplifications facilitated both parsimony of exposition and the ability

to perform more specific analyses of different aspects of the resulting content distribution. Because

the algorithms employed by the platforms are confidential and often complex, we did not model all

aspects of the network that may impact the level of curation. Among these, further exploration

of the possibility of a bias in an algorithm that incorrectly learns from observed data about user

preferences is warranted. For example, Microsoft recently had to shutdown a Twitter Bot after it

shifted to promoting hate speech,24 while Facebook has had trouble with implementing algorithms

that correctly distinguish hate speech from legitimate opinion.25

Another assumption we have made is that the market has homogeneous receiver and sender

marginal costs. Consequently, some notable aspects of social networks, such as the empirically

observed heterogeneous distribution of degree of connectivity among users, are not modeled by

our setup. The extensions in the online appendix show that our results are robust to introducing

different forms of heterogeneity to the model, while featuring outcomes which are more realistic

(such as heterogeneity in degree of connectivity in the network). Having said that, we note that

our results might not apply to specific cases which have potential for future work, such as social

media behavior and followersip of celebrities. The online appendix provides an example of how our

model can be extended to considering the popularity of items while filtering, and shows that such

cases are similar to the analysis of the quality filtering algorithm.

24https://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong/, accessed July 14, 2019.
25https://www.propublica.org/article/facebook-hate-speech-censorship-internal-documents-

algorithms, accessed July 14, 2019.
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From an incentive angle, we have abstracted away from the explicit goal of the platform beyond

focusing on specific aspects of consumer utility. Moreover, there are other possibilities to describe

the receiver consumption decision and the “like” process, including more sophisticated search or

satisficing processes which are left for future work.

An interesting implication of our finding is that by making it easier for senders to create high

quality content, platforms can alter the incentives of receivers to connect to senders as well as the

resulting equilibrium diversity of content. The resulting higher quality may increase connectivity,

but may potentially reduce sender payoffs and diversity of content consumed by receivers. The

analysis in the online appendix shows that while curation algorithms may increase user surplus as

a whole, this may come at the cost of increasing content polarization and creating a filter bubble.

One way platforms can approach this problem is by supplying tools that allow producers easier

creation and editing of content, while focusing their algorithms on encouraging overall higher quality

content without trying to match consumer tastes.
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Appendix

Preliminaries: We first derive a number of properties of the utility distribution we use throughout

the proofs. Let Q ∼ U [0, 1], D ∼ U [0, 2ϕ] and g(), G() be the pdf and cdf of U = Q−D. We have:

E[U ] =
1

2
− ϕ, (25)

g(u) =



1 + u
2ϕ −2ϕ ≤ u < min(1− 2ϕ, 0)

1
2ϕ min(1− 2ϕ, 0) ≤ u < 0

1 0 ≤ u < max(0, 1− 2ϕ)

1−u
2ϕ max(0, 1− 2ϕ) ≤ u ≤ 1

(26)

G(u) =



(u+2ϕ)2

4ϕ −2ϕ ≤ u < min(1− 2ϕ, 0)

1 + 2u−1
4ϕ min(1− 2ϕ, 0) ≤ u < 0

u+ ϕ 0 ≤ u < max(0, 1− 2ϕ)

1− (1−u)2
4ϕ max(0, 1− 2ϕ) ≤ u ≤ 1

(27)
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Pr(U > t)E(U |U > t) =



1
6

(
− t3

ϕ − 3t2 + 4ϕ2 − 6ϕ+ 3
)
−2ϕ ≤ t < min(1− 2ϕ, 0)

1−3t2
12ϕ min(1− 2ϕ, 0) ≤ t < 0

1
6

(
−3t2 + 4ϕ2 − 6ϕ+ 3

)
0 ≤ t < max(0, 1− 2ϕ)

(t−1)2(2t+1)
12ϕ max(0, 1− 2ϕ) ≤ t ≤ 1

(28)

Proof of Proposition 1: The payoff function ϕαN
(
q − c+ 1−2ϕ

2

)
is quadratic in ϕ and

reaches its maximum at ϕ∗ = q−c
2 + 1

4 . The latter is clearly increasing in q and decreasing in c. 2

Proof of Proposition 2: The expected payoff E(πR) = J ·Pr(Uj > t)E(Uj − c|ϕ,Uj > t) can

be written as

E(πR) = J

∫ q+1

t
(x− c)g(x− q)dx (29)

By increasing t the integration interval decreases, but the integrand does not change. Hence, the

integral is maximized when the integrand is all non-negative, which occurs at t∗ = c.

To calculate the optimal ϕ, we first need to calculate J · Pr(Uj > c)E(Uj − c|ϕ,Uj > c) as a

function of ϕ. To use the results obtained in (28), we transform

E(ϕ) := Pr(Uj > c)E(Uj − c|ϕ,Uj > c) = Pr(Uj > c)E(Uj |ϕ,Uj > c)− cPr(Uj > c) =

Pr(U > c− q)E(U |U > c− q)− (c− q)(1−G(c− q)) (30)

since the Uj used here is shifted by q to the right compared to the U in (28). The resulting function

is increasing for every ϕ < 1−t̃
2 when t̃ = c− q. Hence, the receiver sets ϕ∗PA = 1+q−c

2 .

To prove the second part of the proposition, the probability of content being filtered by the

algorithm is Pr(Uj ≤ c|ϕ∗) = Pr(U ≤ t̃|ϕ∗) = G(t̃|ϕ∗) when t̃ = c− q. We then get

dG(t̃, ϕ∗)

dt̃
= g(t̃|ϕ∗) +

∂G(t̃, ϕ∗)

∂ϕ∗
∂ϕ∗

∂t̃
(31)

This expression is always positive for −1 ≤ t̃ ≤ 1, and since t̃ is increasing in c and decreasing in

q, this proves the result. 2

Proof of Proposition 3: In case of the QA, the expected payoff can be written as

E(πR) = J ·Pr(Qj > t)E(Qj −Dj − c|ϕ,Qj > t) = J ·Pr(Qj > t)(E(Qj −E(Dj + c)|ϕ,Qj > t)) =

J · Pr(Qj > t) (E (Qj − ϕ− c|ϕ,Qj > t)) = J

∫ q+1

t
(x− ϕ− c) · 1dx (32)
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As in the case of the perfect algorithm, the integral is maximized when the integrand is non-negative,

that is at t∗ = ϕ+ c. To obtain the optimal ϕ, we calculate the integral

q+1∫
ϕ+c

(x− ϕ− c) · 1dx =
1

2
(c− q + ϕ− 1)2 (33)

Plugging the integral into the receiver’s utility function, we find that it has a local maximum at

ϕ∗ = 1
3(1−c+q), and a local minimum at 1−c+q. We require that c+ϕ∗ < q+1 to make sure the

algorithm does not filter all content, which means the local maximum is also a global maximum.

In addition, since the algorithm can filter for qualities between q and q + 1, when c− q < −1
2 , the

algorithm does not filter at all, and the receiver experiences the no algorithm case.

Comparing this value to the value found for the PA algorithm in proposition 2, we find that

ϕ∗PA > ϕ∗QA when 1 > c− q > −1
2 . The other items are straightforward comparisons to the values

found for the other algorithms. 2

Proof of Proposition 4: Similarly to the previous case, the expected payoff can be written

as

E(πR) = J Pr(Dj < −t)E(Uj − c|ϕ,Dj < −t) (34)

= J

∫ −t
0

(
q +

1

2
− x− c

)
· gD(x)dx (35)

When gD() is the PDF of Dj . The expected payoff is maximized at t = c− q− 1
2 . At this threshold

the expected payoff is

E(πR) =


αNϕ

(
q − c− ϕ+ 1

2

)
c− q ≤ 1

2 − 2ϕ

αN
16 (2q − 2c+ 1)2 1

2 − 2ϕ < c− q ≤ 1
2

(36)

The function is maximized at ϕ∗ = 2(q−c)+1
4 for −3

2 < c − q < 1
2 . When c − q ≤ −3

2 , ϕ∗ = 1 and

when c− q ≥ 1
2 , ϕ∗ = 0.

Using this result, the amount of content filtered by the algorithm amounts to zero, because the

receiver has no benefit of adding senders with distance that will be filtered later. 2

Proof of Corollary 5: When there is no curation, the average distance from which a receiver
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reads a message is simply the expected distance which is ϕ with ϕ∗NA = q−c
2 + 1

4 , that is

dNA =


1 c− q ≤ −3

2

q−c
2 + 1

4 −3
2 < c− q ≤ 1

2

0 c− q > 1
2

(37)

In case of the perfect algorithm messages with utility below c are filtered out. Hence, the

average distance encountered by a customer is ED[D|Uj > c] with ϕ = ϕ∗PA. Calculation results in:

dPA =



1 c− q ≤ −2

1
3

(
1
c−q −

5
c−q+4 + q − c+ 4

)
−2 < c− q ≤ −1

1+3(q−c)+3(q−c)2
3(1+2(q−c)) −1 < c− q ≤ 0

q−c+1
3 0 < c− q ≤ 1

0 c− q > 1

(38)

Under the quality algorithm, the distance is independent from the filtering, thus the expected

distance is ϕ with ϕ∗QA = q−c+1
3 when 1 > c− q > −1/2 and ϕ∗NA otherwise, that is:

dQA =



1 c− q ≤ −3
2

q−c
2 + 1

4 −3
2 < c− q ≤ −1

2

q−c+1
3 −1

2 < c− q ≤ 1

0 c− q > 1

(39)

In case of the distance algorithm, the expected distance is the same as under the no algorithm

case.

Comparison of these values shows that dQA ≥ dNA = dDA for for every 1 ≥ c − q ≥ −2 with

strict inequality when 1 > c− q > −1
2 in the applicable range of values. In addition, dPA > dNA if

and only if A < c− q < 1 where A ≈ −1.263. 2

Proof of Proposition 6: Before examining comparative statics, we provide details on how we

obtained the solution in equation (17). A sketch is already presented in the main text. To ensure

that the first order condition results in a local maximum, we need to check that the second order

condition associated with the first order condition presented in (15) is negative. This is satisfied
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when qj ≥ r and r + 2ϕ ≥ qj ≥ r + 2ϕ − 1. We also have to make sure that the solution of (15)

yields not only a local, but also a global maximum. The marginal cost crosses the marginal revenue

in at most two points, one being identified by the FOC. As the SOC reveals, the marginal cost

exceeds the marginal revenue after this point, so the payoff declines above this point. However, it

is possible that the marginal cost function crosses the marginal revenue once more, from above for

small values of qj , creating a potential for qj = 0 corner solution. To avoid this, we assume that

k < kNA, where in equilibrium the profit of the sender is positive when k < kNA. Solving for the

positive profit results in kNA = min( 8c
2(r+c)−1 − 2, 1) ensuring that we obtain a non-trivial solution

in (17) as long as r < 1.

For the comparative statics results we differentiate the ϕ∗ function given in (17) with respect to

r, c and k and obtain the stated signs. To obtain the results on equilibrium quality, we differentiate

q∗ = r + 2ϕ∗(1− k). 2

Proof of Proposition 7: Before proving comparative statics, we detail how we obtained

q∗(ϕ). From the point of view of receiver j, since the marginal cost of quality is fixed at k, her

best response will fall in the range where the marginal revenue
g(r−qj)

1−G(c−q−j) is decreasing in qj .

Examination of g(r − qj) shows this happens only when qj ≥ r and r + 2ϕ ≥ qj ≥ r + 2ϕ − 1.

Adding the condition k < kPA with

kPA = min

(
2

(√
r(r + 4) ((c− r)2 − 8)2

(c2 − r(r + 4))2 (c(c+ 8)− r(r + 4) + 16)2
−

(c− r)(c(r + 2)− (r − 2)(r + 4))

(c2 − r(r + 4)) (c(c+ 8)− r(r + 4) + 16)

)
, 1

)
(40)

similarly to the previous section is sufficient to ensure a global maximum. Solving the FOC

g(r − q) − k(1 − G(c − q)) = 0 along with the solution ϕ∗ = 1+q−c
2 from Proposition 2 and the

above conditions, shows the only solution is the one we report. The comparative statics in part

two follows in a straightforward manner from q∗.

For parts three to five, the equilibrium qualities are:

q∗NA =


r + 2(1− k) 0 < k ≤ r−c

2 + 1
4

(2c−1)(k−1)+2r
2k

r−c
2 + 1

4 ≤ k < kNA

(41)

q∗PA =


r + 2(1− k) 0 < k ≤ r−c

2

k(2+c)+1−
√

2k(c+2k−r)+1

k
r−c
2 ≤ k < kPA

(42)
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The senders’ equilibrium profits are:

πNAS =


k2 − k(r + 2) + 1 0 < k ≤ r−c

2 + 1
4

1
4(−2c(k − 2)− 2(k + 2)r + k + 2) r−c

2 + 1
4 ≤ k < kNA

(43)

πPAS =


k2 − k(r + 2) + 1 0 < k ≤ r−c

2

k2(c(c+4)−r(r+4)+8)−2k(r−2c−2)−2(1+k(c+2))
√

2k(c+2k−r)+1+2

2
(√

2k(c+2k−r)+1−ck+kr−1
) r−c

2 ≤ k < kPA
(44)

For 0 < k ≤ r−c
2 and r−c

2 < k ≤ r−c
2 + 1

4 the results follow from a direct comparison. When

r−c
2 + 1

4 < k ≤ min(kNA, kPA), we find that πNAS > πPAS when:

k > k̃(r, c) = (45)

− 2
16c3 + c2(34− 48r) +

√
− ((c− r)2 − 8)2 (4c2 − 8c(r − 1) + 4(r − 2)r − 33)

(13c− 13r + 34)(5c− 5r − 2)
(46)

− 2
4c(r(12r − 17)− 8) + 2r(r(17− 8r) + 16)− 36

(13c− 13r + 34)(5c− 5r − 2)
(47)

Solving for r and c in the condition r−c
2 + 1

4 < k̃(r, c) ≤ min(kNA, kPA), yields that for r <

1
17

(
53− 8

√
33
)

there exists a range of values of 0 < c < r s.t. the profits under the NA case are

higher than under the PA case. For example, when r < 0.21, this condition holds for any c < r.

2

Proof of Proposition 8: The probability of receiving a like, P (Qj) depends on the values of

r and t and can be broken up into three cases:

When r ≥ t:

P (Qj) =



0 qj ≤ r − 1

(qj−r+1)2

4ϕ r − 1 < qj ≤ min(r, r + 2ϕ− 1)

2qj−2r+1
4ϕ r < qj ≤ r + 2ϕ− 1

qj − r − ϕ+ 1 r + 2ϕ− 1 < qj ≤ r

1− (qj−r−2ϕ)2
4ϕ max(r, r + 2ϕ− 1) < qj ≤ r + 2ϕ

1 qj > r + 2ϕ

(48)
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When r + 2ϕ ≥ t > r:

P (Qj) =



0 qj ≤ t− 1

(qj−t+1)(qj−2r+t+1)
4ϕ t− 1 < qj ≤ min(r + 2ϕ− 1, t)

2qj−2r+1
4ϕ t < qj ≤ r + 2ϕ− 1

qj − (r−t)2
4ϕ − r − ϕ+ 1 r + 2ϕ− 1 < qj ≤ t

1− (qj−r−2ϕ)2
4ϕ max(t, r + 2ϕ− 1) < qj ≤ r + 2ϕ

1 qj > r + 2ϕ

(49)

The case t > r + 2ϕ is not possible since t∗ = c+ ϕ and r ≥ c, and thus we omit it.

When using each one of these functions in the profit function, we notice (similar to the NA

case) that the marginal revenue may cross the marginal cost up to two times, in which case one

point will be a local maximum, and the other a local minimum. In addition, since both functions

have linear parts, it is possible to have a discontinuity in the first order from a positive marginal

profit to a negative one, depending on the value of k.

The second order condition of Equation (22) is only negative on the concave parts of the

functions, which always happens in the range qj ≥ t. In addition, on the linear parts the maximum

is achieved at the right edge of the range, which is always the beginning of a concave part of the

function. The best response of the receiver is therefore in the range qj ≥ t, which means that in

equilibrium P (Q−j > t) = 1, and effectively the content of senders is not filtered because of low

quality.

Using this simplification, we find that when r ≥ t, the solution to the first order condition

coincides with the NA result, but when r + 2ϕ > t ≥ r, the solution has a discontinuity, yielding

the one appearing in (23):

q(ϕ) =


r + 2ϕ(1− k) 0 < k ≤ 1

2 + r − c

c+ ϕ 1
2 + r − c < k ≤ kQA

(50)

with kQA = min(1, −4c
2+c(8r+4)−4r(r+1)+7

8c+4 ).

Using this result and the result from section 4.3 that ϕ∗QA = q−c+1
3 when c − q > −1

2 and

2(q−c)+1
4 when c− q ≤ −1

2 we find the feasible equilibrium values q∗QA and ϕ∗QA which adhere to the
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constraint that the profit is positive for some positive value of k:

ϕ∗QA =


1 0 < k ≤ 2(r−c)+1

4

1+2(r−c)
4k

2(r−c)+1
4 < k ≤ 1

2 + r − c

1
2

1
2 + r − c < k ≤ kQA

(51)

The comparative statics follow directly from the equilibrium values of q∗. 2

Proof of Proposition 9: Setting βQ = 0 implements a form of the DA algorithm (with βD
allowed to vary) which we have shown is equivalent to the NA case. Since implementing algorithms

has a cost, we can assume there will be no case with βD 6= 0 and βQ = 0. Hence, when we assume

that βQ 6= 0, and allow βQ and βD to vary freely, the utility of the receiver is J · Eϕ when:

Eϕ =

−c+ q − ϕ+ 1
2

t ≤ βQq − 2βDϕ

−8β4
Dϕ

3+4β3
Dϕ

2(3βQc+4βQϕ−3t)+6β2
Dϕ(βQq+βQ−t)(βQ(−2c+q−2ϕ+1)+t)

12β2
D
β2
Q
ϕ

+
βD(t−βQq)2(3βQc−2βQq−t)+βQ(βQq−t)3

12β2
D
β2
Q
ϕ

βQq − 2βDϕ < t ≤ βQq

−4β2
Dϕ

2+βQ(6ϕ(βDc+t)+8βDϕ
2+6ct)−6βDtϕ+3β2

Q(q+1)(−2c+q−2ϕ+1)−3t2

6β2
Q

βQq < t ≤ βQ(q + 1)

0 βQ(q + 1) < t

(52)

The platform picks t∗ to maximize Eϕ. The values of t∗ where both the first order and second

order conditions hold are:

t∗ =


βQ(c+ ϕ)− βDϕ ϕ ≥ βQ(q−c)

βQ−βD
βQ(2βDc+(βQ−βD)q)+2βDϕ(βQ−βD)

βD+βQ

βQ(q−c)
βQ−βD > ϕ > q−c

2

(53)

Maximizing the receiver’s utility J · Eϕ results in:

ϕ∗ =


βD(1+2q−2c)+βQ

4βD
βD ≥ βQ

βQ(c−q−1)
βD−3βQ βD < βQ

(54)

Plugging into the receiver’s profit function yields αN 3bD2(−2c+2q+1)2+2bDbQ−bQ2

48bD2 when βD ≥ βQ

and αN bQ(bD−2bQ)(c−q−1)3
3(bD−3bQ)2

otherwise. Both functions are maximized at βQ = βD, and specifically

with βQ = βD = 1.
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Using the notation of t = c− q, the maximum value is:

π∗R,PA(t) = π∗R(βD = βQ) =


αN 2+6t2+t3

12 −3
2 < t ≤ −1

αN 1−3t+3t2

12 −1 < t ≤ 0

αN (1−t)3
12 0 ≤ t ≤ 1

(55)

If implementing a distance measurement is too costly (high γQ), we can perform the same

analysis to find the optimal algorithm that uses only quality measurement βQ 6= 0 with βD = 0.

The resulting receiver profit does not depend on βQ:

π∗R,QA(t) = π∗R(βD = 0, βQ 6= 0) =


αN (1−2t)2

16 −3
2 < t ≤ −1

2

αN 2(1−t)3
27 −1

2 < t ≤ 1

(56)

hence it is also maximized at βQ = 1.

For completeness, the value of the receiver’s utility without an algorithm is:

π∗R,NA(t) =


αN (1−2t)2

16 −3
2 < t ≤ 1

2

0 1
2 < t ≤ 1

(57)

It is easy to verify that π∗R,PA(t) ≥ π∗R,QA(t) ≥ π∗R,NA(t) for every −3/2 < t < 1. Hence, when

γQ + γD is high, the platform will not apply any curation. When γQ + γD is low, the platform will

apply the perfect algorithm. For intermediate values of γD + γQ when:

γQ < π∗R,QA(t)− π∗R,NA(t) =


αN (5−8t)(2t+1)2

432 −1
2 < t ≤ 1

2

αN 2(1−t)3
27

1
2 < t < 1

(58)

γD > π∗R,PA(t)− π∗R,PA(t) = αN
(1− t)3 + 9t3

108
(59)

the platform will implement the quality algorithm. 2

Proof of Corollary 10: We first verify that when r = c and k ≤ min(k̄PA, k̄QA, 1) in the

full equilibrium πPAR ≥ πQAR ≥ πNAR . We plug-in the equilibrium levels of connectivity and qualities

43



found in the previous proofs to derive the receiver utilities:

πNAR =


3
2 − 2k k ≤ 1/4

1
16k2

k > 1/4

(60)

πQAR =


1
4 k ≥ 1/2

3
2 − 2k k < 1/4

1
16k2

1/4 < k ≤ 1/2

(61)

πPAR =


31k2+(6+15k)(1−

√
4k2+1)

12k2
k ≥ 2/3

9k3+(2−4k2)
√
4k2+1−2

6k3
k < 2/3

(62)

A simple comparison shows that πPAR ≥ πQAR ≥ πNAR . This means that the conclusion of

Proposition 9 also hold in our case with different cost boundaries on γQ and γD. 2

Proof of Corollary 11: As mentioned in the text, dNA = ϕ∗NA and dQA = ϕ∗QA. For the

perfect algorithm case:

dPA =


1
3

(
1

c+2k−r−2 −
5

c+2k−r+2 − c− 2k + r + 6
)

0 < k ≤ r−c
2

1
3

(
1−
√
2ck+4k2−2kr+1

k − 2k(−
√
2ck+4k2−2kr+1+3k+1)√

2ck+4k2−2kr+1−ck+kr−1 + 6

)
r−c
2 < k < kPA

(63)

The result follows from direct comparison of the values when r ≤ 1. 2
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