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False Discovery in A/B Testing

Abstract

We investigate what fraction of all significant results in website A/B testing are actually

null effects, i.e., the false discovery rate (FDR). Our data consists of 4,964 effects from 2,766

experiments conducted on a commercial A/B testing platform. Using three different methods,

we find that the FDR ranges between 28% and 37% for tests conducted at 10% significance, and

between 18% and 25% for tests at 5% significance (two-sided). These high FDRs stem mostly

from the high fraction of true-null effects, about 70%, rather than from low power. Using our

estimates we also assess the potential of various A/B test designs to reduce the FDR. The

two main implications are that decision makers should expect 1 in 5 interventions achieving

significance at 5% confidence to be ineffective when deployed in the field, and that analysts

should consider using two-stage designs with multiple variations rather than basic A/B tests.
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1 Introduction

Marketers increasingly use online experiments (A/B tests) to inform their decisions. Such exper-

imentation is facilitated by various A/B testing platforms like Adobe Target, Google Optimize,

Monetate, Optimizely and VWO. These platforms make it easy to randomly allocate users to

treatment conditions and to measure their responses.

Despite the increasing popularity of website A/B testing, practitioners using it are often dis-

appointed with the results. First, the great majority of effects are very small and statistically

non-significant.1 The same has been observed in digital advertising experiments (Blake et al. 2015,

Lewis and Rao 2015, G. Johnson et al. 2017, Gordon et al. 2019). Second, even when the interven-

tion exhibits a statistically significant (or significant, for short) uplift, deploying it often generates

no notable improvement in the field (Goodson 2014). In other words, the result does not replicate,

implying that the original test result was a false positive or false discovery.

This study investigates false discovery in A/B testing by analyzing data from nearly 5,000

effects tested in 2,766 experiments run on Optimizely, the largest online A/B testing platform with

roughly 35% market share.2 Specifically, we answer three questions: (i) how prevalent are false

discoveries, (ii) to what extent does this prevalence stem from a high fraction of true nulls vs.

low power, and (iii) what can firms to do improve their FDR? The answers to these questions not

only quantify various facets of the false discovery problem affecting A/B testing, but also point to

promising ways to address it. In the process, we also explore a few additional questions, such as

whether the FDR varies systematically across industries and experimenters’ experience.

Our study provides three main insights. First, false discoveries are indeed quite prevalent in

website A/B testing. Of all effects displaying statistical significance at 5%, about 1 in 5 are truly

null. At 10% significance, the false discovery rate (FDR) is about 1 in 3. Possible malpractice in

data analysis, such as not accounting for multiple comparisons, will produce even higher FDRs.

Second, the disappointingly high FDR stems mostly from a high fraction of true nulls rather

than high Type I or Type II error rates. Specifically, the main culprit is that true nulls account

for about 70% of all the effects being tested. A similarly high fraction of null effects has been

observed on Microsoft’s Bing (Deng 2015), and our study generalizes this finding to a much greater

1https://vwo.com/blog/cro-industry-insights/, Accessed Mar 2, 2020.
2https://www.datanyze.com/market-share/testing-and-optimization, accessed February 12, 2020.
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set of experimenters, organizations, and industries. In contrast, inadequate power contributes only

little to the high FDR. The average power in the experiments we analyze is 65% to 70% at 10%

significance, and the FDR of tests at that level of significance would still be 20% even if power were

100%. Neither would tightening the significance level fully resolve the high-FDR problem. E.g.,

the FDR remains 18 – 25% at 5% significance, and 5 – 8% at 1% significance. For decision makers,

these findings imply that possible disappointment with A/B testing stems not from deficiencies of

the method itself, but from the interventions being tested in the experiments.

Even so, our third insight pertains to assessing potential improvements in the design of A/B tests

that can reduce the FDR. Specifically, a simulation informed by our empirical estimates indicates

that analysts should consider using two-stage designs with multiple variations rather than basic

A/B tests. For parameter values representative of our sample of experiments, the FDR for one-sided

tests at 5% significance improves from 24% to 12%.

We proceed as follows. Section 2 presents a formal definition of the FDR and its relation to

the fraction of true nulls and the Type I and II error rates. Section 2 also describes three methods

to estimate the fraction of true nulls and the FDR. Section 3 shows how false discoveries not

only cause unnecessary switching costs and disappointment with rolling out false discoveries with

zero effect, but also lower the expected gains in effectiveness from running experiments. Section

4 describes the research setting and the data. Section 5 presents the main results, followed by

Section 6 that documents various contingencies. Section 7 investigates how the design of A/B tests

can be improved to lower the FDR, and Section 8 discusses to what extent the findings generalize

beyond our specific research setting. Section 9 concludes with implications for decision makers and

analysts.

2 False Discovery Rate

2.1 Definition

A basic A/B test is designed to assess the difference in outcomes of two versions of a webpage. We

call this difference the effect θ. The false discovery rate is the probability that a measured effect θ̂

reflects a true null (θ = 0), even though θ̂ is statistically significant at some level of significance α.

In this section, we define the FDR in mathematical terms, and state its relation to the Type I and
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II error rates.

Let θ be the true effect and let its estimate θ̂ be declared significant if the test statistic lies in

a rejection region Γ. For simplicity of exposition, we assume that the test is based on a z-score.

For a two-sided test at α = 0.05, Γ = {z : |z| ≥ 1.96}. Considering a set of experiments, where the

true effect θ varies, the FDR is then Pr(θ = 0|z ∈ Γ). In contrast, the Type I error rate α is the

probability that a significant measurement actually stems from a null, i.e., α = Pr(z ∈ Γ|θ = 0).

The Type II error rate β is the probability that a non-significant result stems from a non-null effect,

i.e., β = Pr(z 6∈ Γ|θ 6= 0). The power of the test, or the probability that the measurement of a true

non-null effect is significant, Pr(z ∈ Γ|θ 6= 0), is simply 1−β.3 Finally, denote the probability that

the true effect is null as Pr(θ = 0) = π0.
4 Using Bayes rule we can express the FDR as:

Pr(θ = 0|z ∈ Γ) =
Pr(z ∈ Γ|θ = 0)Pr(θ = 0)

Pr(z ∈ Γ)

=
Pr(z ∈ Γ|θ = 0)Pr(θ = 0)

Pr(z ∈ Γ|θ = 0)Pr(θ = 0) + Pr(z ∈ Γ|θ 6= 0)Pr(θ 6= 0)

=
απ0

απ0 + (1− β)(1− π0)
(1)

In a properly conducted and analyzed experiment, the FDR is a function of three elements: The

probability that effects are truly null π0, the Type I error rate or significance level α, and the power

1− β.

Note how the FDR differs from the Type I error rate α. Whereas α = Pr(z ∈ Γ|θ = 0), the

FDR equals Pr(θ = 0|z ∈ Γ), i.e., the conditioning is reversed. Figure 1 displays the FDR as a

function of π0 and power 1 − β for a fixed value of α = 0.05. For many combinations of π0 and

power the FDR is higher than α. For example with α = 0.05, π0 = 70%, and power at 80%, the

FDR is 12.7%. Even with power at 100% the FDR remains elevated at 10.4%.

Taking derivatives of equation (1) confirms that the FDR increases with the fraction of true

nulls π0 and with the significance level α, and decreases with the power 1 − β. Equation (1) also

shows that any practices that increase α above its nominal level (e.g., 0.05) will increase the FDR

3Even though the Type II error rate is a function of α, the true effect θ, and the experimental design D, we write
β instead of β(α, θ,D) for simplicity.

4Although the true effect on a continuous outcome like a conversion rate cannot be exactly zero, statisticians have
long considered the existence of true null effects having a strictly positive probability of occurring. This notion of
true nulls is consistent with negligibly small effects, centered at 0, that require unfeasibly large samples to detect
(Hodges and Lehmann 1954, Berger and Delampady 1987, Masson 2011, Deng 2015).
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Figure 1: How FDR at multiple power levels varies with π0 when α = 0.05
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at that level. Such practices include improperly testing multiple hypotheses and improperly testing

hypotheses after peeking at the data (Benjamini and Hochberg 1995, Johari et al. 2017).

A second way to present the FDR and its relation to Type I and II error levels is through

the matrix shown in Table 1. It organizes measured effects (events) based on whether they stem

from a true null or not, and whether they are declared significant or not. The expected fraction

of observations that are true nulls is π0, and a fraction α of those will expectedly be declared

significant. Of the expected 1−π0 fraction of non-nulls, a fraction 1−β will expectedly be declared

significant. Hence, the expected fraction of all significant results that are false positives or false

discoveries is the same as in Equation (1).

Table 1: True Nulls and Type I and II Error Rates

Called Significant (Discovery) Called not Significant Total

Null is True απ0 (1− α)π0 π0

Alternative is True (1− β)(1− π0) β(1− π0) 1− π0

Total απ0 + (1− β)(1− π0) (1− α)π0 + β(1− π0) 1

Finally, the FDR can also be defined starting from a mixture model. This has proven useful

for quantifying the FDR empirically (e.g., Efron 2012). Let f(z|θ) be the pdf of the z-scores

conditional on the effect θ. Also, let f0(z) = f(z|θ = 0) which is the standard Normal, and
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f1(z) =
∫
θ 6=0 f(z|θ)h(θ)dθ, where h(θ) is the pdf of the non-null effects, such that:

f(z) = π0f0(z) + (1− π0)f1(z) (2)

Again using Bayes rule, we can express the probability that a measured effect with a specific

z-score stems from the null as:

Pr(θ = 0|z) =
f(z|θ = 0)Pr(θ = 0)

f(z)
=

π0f0(z)

π0f0(z) + (1− π0)f1(z)
(3)

Integrating the expression in (3) over the rejection region Γ that corresponds to the significance

level α and its critical z-score z∗ results in:

Pr(θ = 0||z| ≥ z∗) =
π0(1− F0(z

∗) + F0(−z∗))
π0(1− F0(z∗) + F0(−z∗) + (1− π0)(1− F1(z∗) + F1(−z∗))

=
π0α

π0α+ (1− π0)(1− β)
(4)

2.2 Estimation

We estimate π0 using three methods (A, B and C) that use different inputs and modeling assump-

tions. Method A uses normal mixture modeling, an approach many researchers and data scientists

are familiar with. Method B also uses normal mixture modeling but allows the estimation of the

FDR, as first shown by Efron et al. (2001). It also allows the estimation of average power. The

key idea underlying Method B has generated a multitude of specific implementations (e.g., Efron

2012, Scott et al. 2015), and the one we use extends Method A. Method C is a non-parametric

approach originally developed by Storey (Storey 2002; 2003, Storey and Tibshirani 2003) and allows

the estimation of π0, the FDR and average power.

Methods B and C use different aspects of the data to identify the value of π0 used to estimate

the FDR. Method B identifies π0 from the presence of too large a spike in the middle and too many

observations far into the tails of the distribution of z-scores compared to the standard Normal when

π0 = 1. Method C identifies π0 from the shape of the distribution of p-values compared to the

uniform distribution when π0 = 1. Other similarities and differences across the three methods are

shown in Table 2. Together, they span various dimensions among the approaches currently used

to compute the proportion of true nulls and the FDR (for a recent review, see Korthauer et al.
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(2019)).

Table 2: Estimation Methods

Method A Method B Method C

Inputs (DV*) effect size* z-score* and s.e. p-value*
DV distribution under H0 normal standard normal uniform

DV distribution under H1
normal

(homoskedastic)
normal

(heteroskedastic)
non-parametric

Estimation of π0 Yes Yes Yes
Estimation of FDR No Yes Yes
Estimation of Power No Yes Yes

Method A. Let θ̂i be the estimated effect size from test i. We assume that the true effect

comes from a mixture of nulls and non-nulls: the effect size θi is zero (null) with probability π0 and

θi ∼ N (µ, σ2) otherwise. Consistent with the central limit theorem, we assume that θ̂i ∼ N (θi, s
2).

Here, σ represents the variation among the non-null effects, and s represents the estimation error.

The likelihood of an estimated effect is:

f(θ̂i) = π0φ(θ̂i; 0, s2) + (1− π0)φ(θ̂i;µ, σ
2 + s2) (5)

where φ(x;λ, τ2) is the pdf of the normal distribution with mean λ and variance τ2. From Equation

(5) we estimate the four model parameters π0, µ, σ and s using MLE.

Method B. Method A assumes that s2 is common across tests, regardless of sample size and

the conversion rates in the A/B test. This does not take into account the different standard errors

used in each test. Method B addresses this limitation.

We incorporate the observed standard error (s.e.) ŝi and assume θ̂i ∼ N (θ, ŝ2i ). The likelihood

of θ̂i conditional on ŝi is:

f(θ̂i|ŝi) = π0φ(θ̂i; 0, ŝ2i ) + (1− π0)φ(θ̂i;µ, σ
2 + ŝ2i ) (6)

Equivalently, the test statistic (asymptotic z-score) zi = θ̂i/ŝi has the following conditional

likelihood:

f(zi|ŝi) = π0φ(zi; 0, 1) + (1− π0)φ(zi;µ/ŝi, 1 + σ2/ŝ2i ) (7)

which is the empirical analog of Equation (2). Note, the distribution of the non-null z-score is still
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Normal, but with mean and variance decreasing in si (Hung et al. 1997, Lu and Stephens 2019).

Based on Equation (7) we estimate π0, µ and σ using MLE.

To estimate the FDR over the entire set of m test results, we plug the value of ŝ2i and the MLE

estimates of π0, µ and σ2 into Equation (4) where Φ(·) is a normal cdf:

P̂ r(θi = 0|ŝi, |z| > z∗) =

π̂0α

π̂0α+ (1− π̂0)(1− Φ(z∗; µ̂/ŝi, 1 + σ̂2/ŝ2i ) + Φ(−z∗; µ̂/ŝi, 1 + σ̂2/ŝ2i ))
(8)

and integrate over the empirical distribution of ŝi:

F̂DR(z∗) =

∑m
i=1 P̂ r(θi = 0|ŝi, |z| > z∗)

m
(9)

Method C. Both methods A and B make the parametric assumption that the distribution of

the non-null effects is normal. Method C uses a non-parametric approach with the p-values as its

input. The key idea is that under the null hypothesis the p-values will be uniformly distributed,

whereas under the alternative, the distribution of p-values will be skewed towards low values.

Consequently, the fraction of effect sizes with very high p-values provides a good estimate of π0.

To quantify the FDR, method C uses Table 3 which is the empirical analog of Table 1. In the

Table, m, the total number of effects, and S, the number of significant effects, are both observed. In

contrast, m0, the number of true nulls, and F , the number of false positives, are not observed. As

the number of estimated effects m increases, the fraction F
m0

converges to the nominal significance

level α, and the fraction T
m1

converges to the power 1− β. Also, FDR = E
[
F
S

]
.5

Table 3: False Positives and False Discoveries

Called Significant (Discovery) Called not Significant Total

Null is True F m0 − F m0

Alternative is True T m1 − T m1

Total S m− S m

As noted, the only observed values in Table 3 are m and S, but since F = αm0 = απ0m as

5This expression is not defined when there are no discoveries (S = 0). To account for such cases, one defines
the FDR as E[F

S
|S > 0]Pr(S > 0) (Benjamini and Hochberg 1995) or one uses the positive false discovery rate

pFDR = E[F
S
|S > 0] where the expectation conditions on having at least one positive (i.e., significant) test result

(Storey 2002; 2003). When the number of effects tested m is large, S > 0 is almost certain for any α > 0, and the
refinement in the formal definition of the FDR and the distinction between FDR and pFDR are moot.
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m becomes very large, all we need to fill out the table and compute the FDR is an estimate of π0

(Storey 2002; 2003, Storey and Tibshirani 2003). Specifically, we compute π0 using the method

proposed by Storey and Tibshirani (2003), and implement it using the default settings in the R

package qvalue (Storey et al. 2019). The estimation consists of the following four steps:

1. Denote pj as the p-value of effect j.

2. For a range of λ = 0.05, 0.1, . . . , 0.95 calculate:

π̂0(λ) =
#{tests with pj > λ}

m(1− λ)

3. Fit the natural cubic spline ĝ of π̂0(λ) on λ.

4. Set the estimate of π0 to be π̂0 = ĝ(1).

Instead of using the fraction of observations with p > 0.95 or p > 0.99, this approach borrows

strength from the entire distribution by fitting a flexible curve and taking the estimate at the limit

of λ = 1. We use bootstrapping to compute confidence intervals for π̂0. To compute the FDR at a

specific significance level α, we again follow Storey and Tibshirani (2003):

F̂DR(α) =
m · π̂0 · α

#{tests with pj ≤ α}
(10)

We calculate the FDR at the three levels of α most commonly used in the social sciences, 10%, 5%

and 1% (Brodeur et al. 2020, Leahey 2005), and “bookend” these with two additional levels, 20%

and 0.1%.

3 The cost of false discoveries

Implementing false discoveries generates two kinds of costs. The first is a cost of omission: the gain

foregone by deploying a false rather than true discovery. The second is a cost of commission: the

costs incurred by deploying a false discovery rather than sticking with the current practice. We

discuss each in turn.

Assume a decision maker runs an A/B experiment with one test and one control condition, where

the control is the current implementation. The decision maker uses a one-sided test and switches
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to the treatment if the effect θ̂ is positive and statistically significant at level α (θ̂/ŝ > z1−α).

The gain in effectiveness from such an experiment is 0 if the observed effect is not significant,

also 0 if the observed effect is significant but the true effect θ is null, and the non-null θ otherwise. If

the effects and the observed data are generated according to the normal mixture model introduced

above, then the expected gain in effectiveness for a given ŝ equals (see Appendix A):

EG = (1− π0) · Φ
(
µ− z1−α · ŝ√

ŝ2 + σ2

)
·

µ+
σ2√
ŝ2 + σ2

φ
(
µ−z1−α·ŝ√
ŝ2+σ2

)
Φ
(
µ−z1−α·ŝ√
ŝ2+σ2

)
 (11)

= Pr(θ 6= 0) · Pr
(
θ̂/ŝ > z1−α

∣∣ θ 6= 0
)
· E
[
θ
∣∣ θ̂/ŝ > z1−α, θ 6= 0

]
(12)

These expected gains decrease with π0, and increase with µ and σ because the latter drive

larger true effects. The expected gains decrease with ŝ because lack of precision lowers the ability

to detect and implement interventions with true effects larger than zero. More surprising is that

the gains in effectiveness decrease in z1−α when z1−α ≥ 0, i.e., the gains decrease as one tightens

the significance level α used to declare discoveries. The reason is that fewer positive true effects are

declared significant, i.e., Pr
(
θ̂/ŝ > z1−α

∣∣ θ 6= 0
)

goes down, and this dominates the increase in

the expected true effect conditional on significance E
[
θ
∣∣ θ̂/ŝ > z1−α, θ 6= 0

]
. The decision maker

seeking to maximize EG should use z1−α = 0 or α = 0.50, i.e., roll out any treatment with a

positive observed effect regardless of significance level. This decision rule is consistent with prior

analyses by Stoye (2009), Manski and Tetenov (2016), and Feit and Berman (2019).

Since Pr
(
θ 6= 0

∣∣ θ̂/ŝ > z1−α

)
= 1− FDR from one-sided tests, Equation (12) implies:

EG = Pr(θ̂/ŝ > z1−α) · [1− FDR] · E
[
θ
∣∣ θ̂/ŝ > z1−α, θ 6= 0

]
(13)

Hence, the expected gain in effectiveness is the probability of declaring a discovery, multiplied

by the probability that a discovery is true rather than false, multiplied by the expected true effect

given that it is non-null and its estimate is declared a discovery. Consequently, given a set of

significant findings, the expected boost in effectiveness decreases with the FDR. We quantify how

these expected gains are affected by π0, µ, σ, ŝ2 and α in Section 7.

Of course, decision makers may not seek to simply maximize EG without taking into consider-

ation the cost of deploying false discoveries. Switching from the baseline to the newly discovered
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treatment may trigger switching costs. For many experiments the latter will be low, like changing

the background color of a webpage. But for some it may be quite substantial, like building and

rolling out the infrastructure to enable a new shipping policy. Switching costs are incurred for both

false and true discoveries, with expected frequency απ0 + Φ
(
µ−z1−α·ŝ√
ŝ2+σ2

)
(1 − π0). In addition, top

management may worry that deploying false discoveries will harm their efforts to instill a test-and-

learn culture and the analytics team may worry about their credibility within the firm. These costs

of disappointment are incurred only for false discoveries, with expected frequency απ0. Further-

more, decision makers and analysts may care more about avoiding losses than making equally-sized

gains, and hence may want to sharpen the significance level to avoid interventions with a positive

observed effect but a true negative effect. In short, depending on their cost of switching and dis-

appointment and their level of loss aversion, decision makers and analysts may want to use a value

of α < 0.50 in their decision rule.

Implementing a false discovery results in forgoing the expected gain from experimentation and

incurring various costs. The consequences of foregoing those gains may vary across organizations.

For instance, large organizations with high volume traffic to their websites and plenty of analytics

and engineering resources will be able to quickly detect the lack of improvement, and will have the

resources to test new ideas and implement improvements. Hence, they will forgo the gains of a true

discovery for a shorter period compared to smaller organizations. However, the same organizations

operating on a massive scale typically care about even very small forgone improvements.

4 Data

4.1 Research setting

Our data comes from Optimizely, an online A/B testing platform. It helps experimenters with de-

signing, delivering, monitoring and analyzing different versions of webpages. This section describes

the platform as it operated during the data window. An A/B test is a randomized controlled ex-

periment where there are two (A and B) or more versions of a webpage, called webpage variations.

When an online user visits the experimenter’s website, the platform assigns this visitor to one of the

variations randomly, which is then displayed to the visitor. The assignment is usually implemented

by saving a cookie file on the visitor’s device indicating their assigned variation. Each visitor is
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assigned to a single variation for the duration of the experiment.

The platform monitors actions that the visitor takes on the website after viewing the assigned

variation, and records them in the log of the experiment. The monitored actions are chosen by

the experimenter and are called “goals”. These goals can include engagement, clicks, pageviews,

revenue or other actions defined by the experimenters. In this study we focus on engagement as

the goal, which is defined as clicking anywhere on the tested variation and is the default and most

popular goal on the platform. This allows us to compare performance on the same goal across

experiments, and results in the largest set of experiments for us to study.

The platform logs the number of unique visitors and the number of unique engagement clicks,

also called conversions. The conversion rate of each variation is defined as the number of conversions

divided by the number of visitors. In each experiment, the experimenter designates one variation

as the baseline. The baseline may, but need not, be in use before the experiment started. The

performance of all other variations is compared to the baseline and statistics are computed relative

to the baseline.

The platform reports the result of a one-sided t-test comparing each variation to the baseline.

The tests are performed at 5% significance and called “Chance to beat the baseline”. Figure 2

presents the dashboard displayed to the experimenter. The test statistic is only displayed once the

numbers of visitors to the baseline and to the variation both reach 100.

Figure 2: Experimenter Dashboard: Overview
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4.2 Set of experiments studied

Our raw data contains all 8,598 experiments that were registered on the platform during the month

of April 2014. The data contains daily values of visitor and conversion counts for each variation in

each experiment, from which we calculate the metrics and statistics used in the analysis.

We exclude experiments that have one or more of the following characteristics:

1. Having all conversion rates at 100% or all conversion rates at 0%.

2. Having a conversion rate above 100%.

3. Having less than 100 visitors to the baseline or to all its variations.

4. Not having Engagement as a goal.

5. Ending after November 30, 2014 (the end of our data window).

6. Having no traffic for six consecutive days or all traffic assigned to one variation for six con-

secutive days.

The first three criteria remove experiments with poorly measured effect sizes or poor statistical

inference. The final criterion excludes experiments that very likely were terminated de facto by

reconfiguring the website before the experimenter notified the platform about the experiment’s

termination. Knowing when an experiment was ended is necessary for us to determine whether an

experiment’s result would have been declared statistically significant.

Our final dataset consists of 4,964 effect sizes from 2,766 experiments run by 1,349 experimenter

accounts.6 36% of experiments have more than one non-baseline variation. Only 15% of the

experiments list Engagement as the only goal, and it is possible that some experimenters pursued a

primary goal other than Engagement. We take the number of variations and number of goals into

account in our analyses.

4.3 Descriptive Statistics

Table 4 reports several characteristics of the experiments. The median number of variations ex-

cluding the baseline was 1, and the median number of goals was 3. Experimenters varied quite a

6Throughout the paper, the term experimenter refers to a unique platform account ID, which may be used by
multiple individuals. Hence we use the term experimenter to denote either a unique individual or a set of individuals
running A/B tests using the same account ID.
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bit in the number of prior experiments they had run on the platform, with the median being 97.

On the last day, the typical (median) experiment had run for 15 days.

Table 4: Summary Statistics of Experiments

Mean Median St. Dev Min Max

No. Non-baseline Variations 1.83 1 2.26 1 64
Total Goals 4.18 3 5.72 1 158
Past No. Exp. 248.84 97 390.50 1 2,917
Length 26.04 15 28.23 1 162

N = 2,766. Values are computed on the last day of the experiment.

Table 5 reports descriptive statistics for the 4,964 variations we are analyzing. The variables

are sample size, effect size, lift and z-score.

Table 5: Summary Statistics of Effects

Mean Median St. Dev Min Max

Sample Size (base+focal) 61,009 3,781 556,159 201 34,724,196
Effect Size −0.001 −0.001 0.043 −0.639 0.464
Lift 0.023 −0.001 0.749 −0.821 24.374
z-score 0.105 −0.067 6.939 −80.432 196.084

N = 4,964. Values are computed on the last day of the experiment.

Sample size includes the number of visitors to the baseline and non-baseline variation. The effect

size of a non-baseline variation is the difference in conversion rates between that variation and the

baseline, whereas the lift is the percentage difference in conversion rates from the baseline. Lift is

reported as “Improvement” on the dashboard (Figure 2). The asymptotic z-score is computed as

the effect size divided by its standard error computed as
√

cb(1−cb)
nb

+ cv(1−cv)
nv

, where cb and cv are

the observed conversion rates for the baseline and the variation respectively, and nb and nv are the

respective sample sizes.

Figure 3 shows that effect sizes and especially z-scores exhibit long tails. This is confirmed

by their kurtosis being much higher than that of a normal distribution (30 and 451, respectively,

vs. 3), and by Shapiro-Francia tests rejecting the null that either variable is normally distributed

(p < 0.0001). The red line in the histogram of p-values crosses the vertical axis at 1.8%. Since

there are 40 bins, the mass under that line amounts to 72% of the p-values.

Reflecting the experience of many practitioners using A/B tests, the effect sizes tend to be very

small, and frequently non-significant: only 26% are significant at α = 10%, 20% at α = 5%, and
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Figure 3: Histograms of effect sizes, z-scores and p-values
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N = 4,920, covering 99.1% of the data.
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13% at α = 1%.

4.4 Comparison with more recent experiments

The experiments from 2014 that we analyze are similar to those run in 2017 and 2018 on the same

platform, as reflected in basic descriptive statistics for 21,836 experiments run between November

2016 and September 2018 (Thomke 2020, pp. 110–112). The fraction of experiments with only

a single non-baseline variation barely changed (64% vs. “about 70 percent”), as did the mean

number of non-baseline variations (1.8 vs. 1.5). The average runtime of experiments increased

slightly, from 3.7 to 4.4 weeks. The four industries that experimented the most remained the same:

Retail, Media, Hi-Tech, and Professional or Financial Services. Thomke reports that “19.6 percent

of all experiments achieved statistical significance on their primary metric”. We find that 26% of all

experiments in our data reached 5% significance (one-sided) on engagement.7 As in the 2016-2018

data, this number splits almost evenly between positive and negative effects. In short, even though

the performance metric on which the tests are performed differ, the pattern of significance did not

change markedly.

5 Results

5.1 How many effects are true nulls?

Table 6 reports the estimates of π0 from methods A, B and C. For A and B, it also reports estimates

of the other model parameters. Column B/C reports estimates of model B where π0 is restricted

to the estimate obtained from method C.

Method A estimates π0 to be 67% [95% C.I. 64 – 69%]. As noted earlier, this method does not

take into account how standard errors differ across tests. Method B does and estimates π0 to be

80% [95% C.I. 78 – 81%]. Method B has less restrictive assumptions and fits the data markedly

better (∆− 2LL = 2, 230).

Whereas methods A and B assume normality for the non-null effects, method C does not make

any parametric assumptions on those effects. Its estimate of π0 is 72% [95% C.I. 65 – 78%]. Given

7Thomke does not specify the level of significance, and whether the tests are one-sided or two-sided tests, or apply
to the experiments’ extreme or average variation. Consistent with Optimizely’s dashboard, we assume that Thomke
refers to one-sided tests at 5% significance. Finally we assume that Thomke’s numbers pertain to the most extreme
lift.
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Table 6: Estimates of π0 and other model parameters

Method
A B C B/C

π0 0.6654∗∗∗ 0.7976∗∗∗ 0.7162∗∗∗ 0.7162
(0.0145) (0.0087) (0.0349)

µ −0.0036∗ −0.0032 −0.0030
(0.0018) (0.0026) (0.0022)

σ 0.0714∗∗∗ 0.0759∗∗∗ 0.0693∗∗∗

(0.0017) (0.0022) (0.0017)
s 0.0133∗∗∗

(0.0004)

−2LL -20,145 -22,375 -22,302

N = 4,964. S.E. in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

the differences between the estimates from methods B and C, we re-estimate the model in method

B after restricting π0 to the value estimated from method C, corresponding to the red line in the

histogram of p-values. This restricted model fits worse (∆−2LL = −73), but produces very similar

estimates of µ and σ. Hence we believe that the 72% estimate of π0 is credible across methods.

True nulls amounting to 70% of all effects may sound high, yet it is consistent with an earlier

report that the true null rate in experiments conducted on Microsoft’s search engine Bing was over

80% (Deng 2015). Also, it compares favorably with academic psychology where the true null rate

has been estimated to be about 90% (V. Johnson et al. 2017).

Both methods A and B allow the first component of the mixture to capture the spike at zero.

Rescaling effect sizes by their standard error results in a density of z-scores with longer tails com-

pared to effect sizes. It is these longer tails that result in a higher estimate of σ and π0 in method

B compared to method A.

Method C is less sensitive than method B to extreme z-scores because their transformation

into p-values using the normal cdf squeezes extreme z-scores into the unit interval. Consequently,

method C does not require as large a π0 to account for extreme z-scores as method B does.

5.2 How many discoveries are false?

Table 7 reports the FDRs for two-sided tests at five levels of significance. Method B implies an

FDR of 37% at α = 10%, which was the default level used by the platform to declare significance.

At 5% significance the FDR is 25%, meaning that as many as 1 out of 4 significant results remains

a false discovery. The FDR decreases as one tightens the significance level further, but remains

17



higher than α.

Remember that method C produces a lower estimate of π0 than method B does (72% instead

of 80%). This results in a lower estimate of the FDR at each significance level α as implied by

Equation (1) and Figure 1. Using the same estimate of π0 from method C to estimate the FDR

using the model of method B, leads to nearly identical FDR estimates in method B/C. The FDR

equals 28% at α = 10% and 18% at α = 5%.

An FDR of 18% for website A/B tests conducted at α = 5% may seem surprisingly high. Yet, it

compares favorably with FDRs for tests at the same level of significance in medical research which

experts believe range between 20% and 50% (Benjamini and Hechtlinger 2013) and with FDRs in

psychology where analyses of three different bodies of test results reported FDRs of 41%, 58% and

81% (Gronau et al. 2017).

Table 7: FDR (%) at various significance levels

Method
α (%) B C B/C

20.0 51.0 40.0 40.7
10.0 36.7 27.8 28.0
5.0 24.6 18.0 18.3
1.0 8.2 5.5 6.0
0.1 1.5 0.8 1.2

5.3 Is low power the culprit for the high FDRs?

Variation in the FDR is induced not only by differences in α and π0 but also by differences in

the power 1− β. We therefore investigate how the FDR varies with power, i.e., the probability of

correctly rejecting the null hypothesis at a specific α.

The estimates from Methods B, C and B/C and re-arranging Equation (1) allow us to compute

the average power as:

P̂ ower(α) = α
π̂0

1− π̂0
1− F̂DR(α)

F̂DR(α)
(14)

The results are reported in Table 8. The power of the tests at 20% or 10% significance is 66% or

higher. Hence, the high FDRs of these tests do not result from low power. Conversely, the power

at 1% or 0.1% significance is only 21-45%, yet the FDRs are only 1-8%. Hence, power does not

seem to be the main determinant of the FDR among the test results. Rather, it is the high value
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of π0.
8

Table 8: Power (%) at various significance levels

Method
α (%) B C B/C

20.0 76.9 77.1 74.9
10.0 69.0 66.8 66.1
5.0 61.3 58.6 57.4
1.0 44.8 44.2 40.3
0.1 26.3 31.9 21.2

Figure 4 provides additional evidence that lack of power is not a major contributor to the FDR

in our data. The middle line shows how the FDR computed using Method C varies with α. This

line reflects the FDR at the actual power levels, which of course also vary with α. The bottom line

(minFDR) shows how the FDR varies in a population of experiments where power is 100%, using

Equation (1). The top line (maxFDR) shows how the FDR varies in a population of experiments

where the power is at its minimum, which is α in unbiased tests, resulting in an FDR of π0. The

fairly narrow gap between the middle and the bottom lines again indicates that lack of power is

not the main driver behind the FDR values we observe. Even if power were 100%, the FDR would

still be 11% at α = 0.05 and 20% at α = 0.10.

Figure 4: How FDR at actual, minimum and maximum Power varies with α when π0 = 72%
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8Hoenig and Heisey (2001), Yuan and Maxwell (2005), Gelman and Carlin (2014), and McShane et al. (2020)
express reservations about calculating power ex post using estimates from a single study, a small number of studies,
or studies subject to publication bias. Since our power calculations use nearly 5,000 z-scores not subject to publication
bias, those reservations do not apply.
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5.4 Heterogeneity in the FDR

The results so far pertain to the average experiment. Conceivably the fraction of true nulls (π0),

the distribution of the non-nulls (µ and σ), and the precision of the tests (ŝi) may vary across tests.

This section therefore explores how the FDR and its key drivers vary with four traits of experiments:

(i) the past experience of the experimenter, (ii) the number of goals in the experiment, (iii) the

number of variations in the experiment, and (iv) the industry of the experimenter. We do not

consider sample size since its effect on the FDR is already accounted for through ŝ2i .

The experience of the experimenter may be associated with the FDR in various ways. Greater

experience in running experiments may help the experimenter to generate more ideas that are not-

null (decrease π0) and non-nulls that have bigger effects (µ further away from zero, or higher σ). But

causality may also run the other way: people who had more positive experiences when implementing

A/B tests (lower FDR) may run more experiments. This would also result in experience being

associated with a lower π0, µ being further away from zero, a higher σ, and a lower FDR. Finally,

the association between experience and FDR could be negative if experienced experimenters run

out of ideas and start “scraping the bottom of the barrel”.

Our analysis focuses only on effects in terms of Engagement. However, 85% of the experiments

tracked more than one goal. It is fair to assume that the greater the number of goals tracked, the

less likely it is that boosting Engagement is the main objective of the intervention tested. And

since an intervention meant to affect a goal other than Engagement is more likely to have a true

null effect in Engagement, a larger number of goals may be associated with higher π0 and hence a

higher FDR.

The third variable we investigate is the number of variations in the experiment. Experimenters

testing many variations concurrently may be “scraping the bottom of the barrel,” resulting in a

higher π0, a lower average effect among non-nulls (lower µ), and fewer ideas that really move the

needle (lower σ). Conversely, such experimenters may be “swinging for the fences” and be “going

for the long tail” (Azevedo et al. 2020), which could translate into a large fraction of nulls (higher

π0) but also more outliers among the non-nulls (higher σ). Note, including a greater number of

variations may result in less traffic per variation, which would harm the power and increase the

FDR, but that mechanism is already accounted for through ŝ2i .

We extend the model in method B and make π0, µ and σ a function of the three covariates.
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We use a logit transformation for π0 since it is bounded between zero and one, we use a log

transformation for σ since it is non-negative, and we use a linear expression for µ as it is unbounded.

We measure the experimenter’s experience as the number of experiments they ran previously on

the platform. We use a log transformation, which is consistent with the learning curve effect and

protects the results from being affected by outliers in the highly skewed distribution (see Table 4).

Similarly, we use a log transformation on the number of goals to protect the results from artifacts

due to outliers. Finally, we mean-center the three covariates so the intercepts map roughly into the

estimates from method B in Table 6. Five experiments accounting for nine observations are lost

due to missing values for the number of past experiments.

Table 9 shows the results. Adding the nine parameters notably improves the fit compared

to Model B reported in Table 6 (∆ − 2LL = 182, df = 9, p < 0.001; ∆BIC = 117). Greater past

experience is associated with a lower π0 and an above-average µ, a combination expected to translate

into a lower FDR. In contrast, a larger number of goals is associated with not only a higher π0 but

also a higher µ and σ. Whereas a larger fraction of true nulls is associated with a higher FDR,

a higher mean and a higher variation among the non-nulls are associated with greater power and

hence a lower FDR. Overall, this combination does not translate into an unambiguously upward or

downward shift in the FDR. Finally, a larger number of non-baseline variations is associated with a

lower π0, a lower µ, and a lower σ, which again does not translate into a clear upward or downward

shift in the FDR. Adding fixed effects for the four main industries (Retail, Media, Hi-Tech, and

Financial & Professional Services) and adding an account-specific random effect on π0 barely affects

the point estimates, but the coefficient of the number of goals on π0 loses statistical significance

due to a higher standard error (see Appendix B.1).

Table 9: Method B mixture model with parameters as a function of covariates

logit(π0) µ log(σ)

Intercept 1.3202∗∗∗ −0.0020 −2.6560∗∗∗

(0.0572) (0.0027) (0.0312)
log(Past No. Exp) -0.1136∗∗ 0.0059∗∗∗ 0.0045

(0.0367) (0.0015) (0.0215)
log(Total Goals) 0.2251∗∗ 0.0110∗∗ 0.1614∗∗∗

(0.0714) (0.0035) (0.0419)
No. Non-baseline Variations -0.0517∗∗∗ −0.0010∗∗∗ −0.0338∗∗∗

(0.0066) (0.0001) (0.0058)

N = 4,955 from 2,761 experiments. −2LL = -22,516. S.E. in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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To gain clarity in how the three covariates are associated with the FDR, rather than just π0,

µ and σ, we compute the FDR by tercile of each covariate. Results are reported in Appendix

B.2. The main insight is that the FDR decreases monotonically as we move from the bottom to

the top tercile in experience, but does not show a monotonic change across terciles in the other

covariates. For instance, the FDR at 5% significance is 24% in the first tercile of experience (1 – 40

experiments), decreases to 19% in the middle tercile (41 – 202 experiments), and reaches 13% in

the top tercile (203 or more experiments). For the other two covariates, the FDRs in the bottom

and top tercile vary only between 16% and 17%.

Applying method C for the data from each of the top four industries separately shows that

π0 and the FDR values vary little across these industry verticals. However, they have a lower π0

and lower FDRs than the remaining industries. Reasons could be that these four industries have

greater experience and greater sample size than average (see Table B.2 in the Appendix).

5.5 The probability that a particular effect is null

Managers may want to know the probability that a particular effect is a true null, taking into

account its standard error, but regardless of a specific significance cutoff. This is known as the

local fdr and is given by Equation (3), which we present again with subscripts for observation i:

Pr(θi = 0|zi) =
π0f0(zi)

f(zi)
(15)

We compute the local fdr for each observation using the estimates of π0 and f(zi) from method C.

Figure 5 plots the local fdr against the z-scores between -5 and 5. The left panel of Figure 6

plots the local fdr against the observed effect sizes between -0.3 and 0.3, whereas the right panel

shows the boxplot by 5-percent quantiles. The left panel shows dispersed dots rather than a single

smooth line because of differences in precision across effect sizes. These plots give analysts and

managers a sense of how likely a particular effect is a true null. Overall, of all observed effects, only

19.2% have a local fdr of 50% or less, and only 10.1% have a local fdr of 10% or less.
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Figure 5: Probability that an effect is a true null (local fdr) by z-score

Figure 6: Probability that an effect is a true null (local fdr) by effect size

Left: Observed effect size. Right: 5-percent quantiles of effect sizes. Boxes cover the inter-quartile
range of local fdrs in a given quantile of effect size.

6 Robustness to key assumptions

In this section we investigate features of the data or behaviors of the experimenters that might

inflate or deflate the estimates of π0 and the FDR. The first possible concern pertains to the fact

that we assess Engagement effects, whether or not that was the primary goal of the experiment.

The second and third concerns pertain to possible malpractice by the experimenters in declaring

test results to be discoveries: improperly conducting multiple comparisons and improperly testing

hypotheses after peeking at the data (Benjamini and Hochberg 1995, Johari et al. 2017). Finally, we

also report the FDRs if analysts used one-sided tests on positive effects only rather than two-sided
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tests to declare discoveries.

6.1 Experiments with Engagement as the only goal

Our analyses so far assumed that experiments were designed to test treatment effects in terms of

Engagement. If many experiments were designed to affect a goal other than Engagement, then

our estimates of π0 and the FDR values would be overly pessimistic. Say many interventions

were designed to boost sales and not Engagement. In that case, one would expect less systematic

difference in Engagement across arms of the experiment than when the goal was Engagement, which

would translate into a higher π0 and a higher FDR assuming no change in power. We therefore

repeat the main analyses, but now restricted to the 682 (13.8%) effect sizes of the 424 (15.3%)

experiments tracking only Engagement. Appendix B.3 reports the equivalent of Tables 6 and 7 for

this subset of effects. The parameter estimates from Method A are similar to those for the full

data set. Notably, π̂0 is only slightly lower (63 vs. 67%) and well within the error margin. The

parameter estimates from method B show greater differences. Notably, π̂0 is somewhat lower (71 vs

80%), and this corresponds to somewhat lower FDRs for tests at the 20%, 10% and 5% significance

levels. The FDRs for tests conducted at 1% or 0.1% significance, in contrast, are not affected.

Similarly, methods C and B/C results in only slightly lower π0 (69% vs. 72%) and FDR values.

In short, the Engagement-only experiments exhibit only moderately fewer true nulls and false

discoveries, with the latter difference vanishing at more stringent significance levels. The main

conclusions implied by the analyses in Sections 5.1 and 5.2 hold.

6.2 Click instead of Engagement

We repeat the analysis for the 1,065 experiments where a click on a specific link in the page was

designated as the goal, which yields a total of 1,985 effects.

The mean and median effect sizes are both virtually zero. An FDR analysis using method C

produces an estimate of π0 of 75%, which is similar to that for Engagement. The FDR estimates

are very similar as well (36%, 23%, 15%, 4% and 1%).
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6.3 Improper multiple comparisons

When experimenters test more than one variation in an experiment, they may declare the result

of the experiment to be a discovery if any one of the variations yields a significant result based on

the p-value unadjusted for multiple comparisons. This behavior inflates the effective Type I error

rate above its nominal level (e.g., 0.05) which in turn inflates the FDR. Specifically, if k effects are

tested with the same levels of α and β, then the Type I error rate in declaring at least one effect

significant when all are actually null equals 1 − (1 − α)k. This is traditionally referred to as the

family-wise error rate (FWER). Also, the Type II error rate equals βk. Consequently, the FDR

equals (Ioannidis 2005, Maniadis et al. 2014):

FDR(k) =
π0
(
1− (1− α)k

)
π0 (1− (1− α)k) + (1− π0)(1− βk)

(16)

Taking derivatives shows that FDR(k) increases in k when 1 − β > α. Unless an experiment is

massively underpowered for the chosen significance level, this condition will be met.

The FDR values reported above were computed for the case where experimenters properly

declared discoveries variation by variation, an assumption which need not hold. Hence, we inves-

tigate the question: What would the FDR be in our set of experiments if experimenters engaged

in improper multiple comparison testing and declared an experiment as significant if any variation

reached significance? To answer this question we use the estimates of π0 and β (i.e., 1 - power)

from method C reported in Table 8 and enter those in Equation (16). The values reported in

Table 10 show how much improper multiple comparisons would inflate the FDR. For significance

levels between 1% and 10%, the FDR roughly doubles when multiple comparisons involve 5 or more

variations.

Table 10: The increase in FDR due to improper multiple comparisons

α(%) Power FDR(k)
k=1 k=2 k=3 k=4 k=5 k=6

20.0 0.771 40% 49% 56% 60% 63% 65%
10.0 0.668 28% 35% 42% 47% 51% 55%
5.0 0.586 18% 23% 28% 33% 37% 41%
1.0 0.442 5% 7% 8% 10% 12% 13%
0.1 0.319 1% 1% 1% 1% 1% 2%

This analysis relies on estimates of average power to obtain β values. Appendix B.4 describes
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an alternative approach which produces very similar results without relying on average power.

The presence of multiple variations can lure experimenters into conducting multiple compar-

isons, and doing so improperly is associated with higher FDRs. This may seem at odds with the

finding in Section 5.4 that the FDR did not increase systematically with the number of variations.

This apparent paradox is explained by the fact that the FDR values reported in Section 5 as-

sume that experimenters do not engage in improper multiple comparisons, i.e., they do not declare

the result of the experiment as a discovery if any of its variations yields a significant result, but

rather declare discoveries variation by variation. Hence, FDR values reported in Section 5 need no

correction for multiple comparisons.

6.4 Optional stopping

A second possible malpractice that can make FDR estimates overly conservative (i.e., optimistic) is

that experimenters peeked at the results, and stopped the experiment only once it reached a desired

significance level. This behavior is often referred to as “data peeking” or “optional stopping” and

it is a concern in the A/B testing world (Wald 1945, Pocock 1977, Johari et al. 2017).

Engaging in optional stopping results in declaring more findings significant than is justified. In

terms of Table 3, a fraction u of the m− S experiments that would be called insignificant without

optional stopping now shift to the left column. Following Ioannidis (2005), we assume that this

fraction u is the same across rows, i.e., that it does not depend on whether the true effect is null or

not. Optional stopping then changes the FDR = E
[
F
S

]
to FDR(u) = E

[
F+u(m0−F )
S+u(m−S)

]
. Also, the

expression in Equation 1 changes to (Ioannidis 2005, Maniadis et al. 2014):

FDR(u) =
π0 (α+ u(1− α))

π0[α+ u(1− α)] + (1− π0) (1− β + uβ)
(17)

The u-bias inflates the true Type I error rate above its nominal level α to α + u(1 − α), but

also increases the power. Taking the derivative of FDR(u) shows that the net effect of the u-bias

on the FDR is positive when α < 1− β or equivalently FDR < π0. As noted above this condition

likely holds in the great majority of cases.

Since the FDR values we reported above use the nominal value of α, it is possible that these

values are biased downwards. To address this possibility, we assume that the FDRs on the penul-

timate day of the experiment are free of any such bias. If experimenters delayed stopping the
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experiment by one day in the hope of getting more statistical significance, either through a bigger

effect size or a larger sample size, then the value of the last day may be biased but not that of the

day before.

First we express FDR(u) as:

FDR(u) = E
[
FT−1 + u(m0 − FT−1)
ST−1 + u(m− ST−1)

]
≈ E [FT−1 + u(m0 − FT−1)]

E [ST−1 + u(m− ST−1)]
(18)

where T −1 denotes the penultimate day and T the final day, and the approximation follows Storey

and Tibshirani (2003). Next, we use the property that m0−FT−1 converges to π0,(T−1)m(1−α) as

m grows large. We then apply method C to the data from the penultimate day to estimate π0,(T−1),

and estimate u as
ST−ST−1

m−ST−1
, i.e., the fraction of effects declared not significant in the penultimate

day that are declared significant in the final day. We then estimate FDR(u) as:

F̂DR(u) =
π̂0,(T−1)m(α+ û(1− α))

ST
(19)

Table 11 reports three values for each nominal α level: (i) the u-bias inflated α, (ii) the standard

FDR computed using method C ignoring u-bias, and (iii) FDR(u) which takes the bias into account.

The values are computed on the 4,672 effects from experiments running at least two days and having

a sample size of 100 or more in both the baseline and the other focal variation on the penultimate

day.

As expected, FDR(u) is higher than FDR. However, the increase is small. This implies that the

conclusions from the main analysis remain qualitatively valid even if all experimenters engaged in

optional stopping by delaying the end of their experiments by one day.9

6.5 FDR from one-sided tests

Finally, we also compute the FDR for the case where analysts and decision makers declare discov-

eries only for positive effects and do so using one-sided rather than two-sided tests. Since method

C cannot be used for one-sided tests, we calculate the FDR using method B only. The FDR is

52% at α = 10%, 38% at α = 5%, 14% at α = 1%, and 3% at α = .1%. As expected given that

9The FDR(u) analysis assumed that waiting one more day increases the chance of reaching significance equally
among null and non-null effects. In a sensitivity analysis we computed an alternative FDR(u), where the fraction u
of new discoveries is not split between null and non-null effects in a π0/(1− π0) ratio, but in a κ/(1− κ) ratio where
κ varies from 0% to 100%. Except for the case of α = 0.01, varying κ does not affect the FDR(u) values by much.
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Table 11: The increase in α and the FDR due to optional stopping delay of 1 day

α(%) α+ u(1− α) FDR FDR(u)

20.0 21.1% 39.7% 42.9%
10.0 11.0% 27.4% 31.0%
5.0 6.1% 17.5% 21.8%
1.0 1.4% 5.3% 7.6%
0.1 0.5% 0.7% 4.0%

N = 4,672.

the estimate of µ is essentially 0, the FDRs from one-sided tests at significance level α are nearly

identical to those from two-sided tests at 2 ·α calculated using the same method B (compare Table

7). Calculating the FDR using the non-parametric method of Pounds and Cheng (2006) produces

similar values: 47%, 34%, 11% and 2%.

7 How can firms lower their FDR?

Firms can use five main levers to lower the FDR: (i) reducing α, (ii) boosting the power by increasing

the precision 1/ŝi, and identifying candidate interventions that are less likely to be true nulls and

that are larger given that they are not null, which implies (iii) decreasing π0, (iv) shifting µ away

from zero, or (v) increasing the variance of true effects σ2. Note, shifting µ and σ away from zero

increases the odds of having a large true effect and hence also boosts the power of the test.

We start our analysis with quantifying the marginal effects of these parameters on the FDR and

the expected gain from experimentation EG using one-sided tests. We do so using the estimates

from method B for π0, σ and µ, the observed ŝi, and α = 0.05. Calculating Equation (11) for

each observation and then integrating over the empirical distribution of ŝi, we obtain FDR = 38%

and EG = 0.0050 or a lift of 1.10%, which places EG at the 70th percentile of all observed lifts

and the 37th percentile of all positive observed lifts. Using these empirically informed values of

the FDR and EG as baseline, we then vary each parameter one-by-one. Table 12 shows that π0 is

the dominant contributor to improvements in FDR and EG. It also shows that, except for changes

induced by tightening α, lowering the FDR is associated with increasing the EG.

Changing π0, µ and σ requires changing the quality of the interventions being generated. That

may be difficult to achieve directly. We therefore discuss seven possible strategies to change the

design of the A/B test that lower the FDR. The first three involve only α and the sample size,
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Table 12: Marginal Effects of Key Parameters on the FDR and the Expected Gains from One-Sided
Tests

Parameter Change % Change FDR % Change EG

π0 -10% -24.9% 39.4%
σ +10% -2.5% 12.7%
µ +10% -0.3% 0.6%
ŝi -10% -2.4% 2.1%
α -10% -5.4% -0.6%

and our empirical estimates imply that they do not hold much promise. The next three rely on

using two-step experimental designs or two-step analyses of multiple variations to identify the best

one. The last approach also involves picking the best out of several variations, but the assessment

occurs in a single step and does not require special designs or hold-out samples.

7.1 Tightening significance level α or boosting power through sample size

Since the significance level α is fully within the experimenter’s control, one might conclude from

Equation (1) that the simplest way of reducing the FDR is to lower α (Benjamin et al. 2018).

Indeed, our analyses indicate that the FDR decreases from 18% to 1% when one sharpens the

significance level from α = 0.05 to α = 0.001. However, decreasing the FDR by sharpening α

comes at a cost, because the Type I and Type II error rates are not independent. Specifically, using

the average values reported in Tables 7 and 8, it is far from obvious that a 17-point decrease in

FDR from 18% to 1% is worth a 27-point decrease in power, i.e., the ability to correctly detect true

non-nulls, from 59% to merely 32%.

Another way to reduce the FDR is to boost the power of experiments (e.g., Camerer et al.

2018). Doing so for a given α and true effect size requires a larger sample size and hence likely a

longer runtime. Power can also be increased by reducing the error variance through stratification.

This requires not only more sophisticated algorithms but often also relevant covariates (Berman

and Feit 2019, Bhat et al. 2020). We do not expect either procedure to markedly improve the FDR

in the experiments we analyzed, because they already had nearly adequate power: roughly 60-70%

at both α = 0.1 and α = 0.05. Moreover, our estimate of π0 = 0.72 implies that even if power were

increased to 100%, the FDR would not fall below 20% at α = 0.1 and 11% at α = 0.05.

Finally, experimenters may target a specific level of FDR when planning their experiments.
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Since the goal of A/B testing is to identify better practices, experiments need to be designed to

avoid Type II errors. In contrast, for diagnostic testing and decision making, avoiding Type I errors

may matter only to the extent that it avoids making false as opposed to true discoveries. If or when

the error rate α is less important than the FDR, why not design experiments accordingly?

Experimenters would, in consultation with decision makers or after a formal analysis of the value

of information, choose target levels of power and FDR and then identify the level of α implied:

α = Power
FDR

1− FDR
1− π0
π0

(20)

Table 13 shows the significance levels required for three levels of power ranging from 70% to

90% and for four levels of FDR ranging from 5% to 30%, assuming π0 = 72%. Note, the significance

level α does not need to be sharper than 1%.

Table 13: Levels of α required for combinations of Power and FDR when π0 = 72%

FDR
Power 0.05 0.10 0.20 0.30

90% 0.018 0.039 0.088 0.150
80% 0.016 0.035 0.078 0.133
70% 0.014 0.030 0.068 0.117

Given α and β, the next step is to compute the required sample size as usual. Calculations

reported in Appendix B.5 show that if the true effect is at the 90th percentile of the observed

effect sizes in our data, then the current median sample size per variation (roughly 1,900) is almost

sufficient for a test with α = 0.10 and power = 80%, which results in an FDR of 24% when π0 =

72%. However, if the true effect is only at the 75th percentile, then the required sample size is ten

times larger than the current median. If the effect is just better than 2/3 of all observed effects,

then the sample size must be 50 times the median.

In short, except for large effects, the three approaches relying only on changing α or sample

size are not very promising venues to lowering the FDR. Smarter approaches are desired, even for

firms enjoying massive traffic but chasing very small effects.
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7.2 Two-step testing

Replication is a straightforward way to reduce the number of false discoveries. Instead of declaring a

discovery based on a single experiment, one can (1) take significant results as “potential discoveries”,

(2) run a replication of the first experiment, and (3) declare the effect a discovery only if it is again

statistically significant in the same direction. There are at least three methods to operationalize

this idea.

The simplest way is to plan a replication only after a significant effect has been observed. This

decreases the chance of a false positive from α to α2. The downside is that without increasing the

sample size, the power decreases from 1 − β to (1 − β)2. It is therefore preferable to combine the

two z-values into a single test which amounts to reducing the expected standard error by a factor

of
√

2.

If one is pre-committed to two-step testing, then further efficiency or power gains can be made by

(1) running multiple candidate interventions in a first “screening” or “pilot” stage, (2) replicating

only the largest or the most significant effect in a second “validation” stage, and (3) optimally

splitting the total sample across the first and second stage experiments. One can also set different

levels of α and β in each stage, so as to achieve a given FDR at minimum sample size. This

two-stage approach has attracted considerable attention (Zehetmayer et al. 2005, Zehetmayer and

Posch 2012, Sarkar et al. 2013, Deng et al. 2014). Two main insights are that two-stage designs give

a big boost in power and reduction in FDR over single-stage designs and that splitting subjects

equally across stages is not quite optimal.

A variant is to run only a single experiment with multiple interventions, split the sample into an

exploratory and a validation part, use the exploratory sub-sample to identify the most promising

candidate intervention, and then use the other sub-sample to validate and assess that candidate

(Anderson and Magruder 2017). This variant of the two-stage approach can have the benefit of a

compressed time-window, but only if having enough subjects for both sub-samples does not require

running the test just as long as in a genuine two-stage design.

The key benefit of all the two-step approaches involving multiple treatments is that they allow

one to identify the most promising out of several candidates in terms of effect size. This in turn

increases the power and reduces the FDR because the largest observed effect is less likely to come

from the null and is more likely to reflect a large true effect. Consequently, this approach is
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especially valuable when the distribution of true effects exhibits long tails (Azevedo et al. 2020).

As the histogram of observed effects and formal tests of kurtosis imply, and the estimates of π0 and

σ indicate, the true effects in our data indeed exhibit long tails.

7.3 Pick-the-Best Without Testing

As our discussion of the expected gains from experimentation noted, these will be maximized by

simply declaring any positive effect a discovery. This amounts to using α = 50% and will of course

come with a high FDR. In a simple A/B test, the FDR will equal the fraction of true nulls. However,

just as with a pre-planned two-step study, an A/B test in which one picks the best out of multiple

treatments will result not only in a higher EG but also a lower FDR. We therefore investigate

pick-the-best without any testing as another possible improvement over traditional A/B testing.

7.4 Simulation Analysis

In this Section we use simulation to compare the performance of the replication approach against

the traditional one-shot approach and pick-the-best without testing. We do so on two criteria:

the FDR and the expected gain from experimentation EG. We expect replication to dominate the

traditional A/B test on both metrics. Compared to pick-the-best, it is obvious that replication

does worse on EG and better on FDR. Hence the decision to use replication vs. pick-the-best will

depend on the relative gap in performance on each metric and how much the decision maker wants

to avoid false discoveries even if this comes with forgoing gains.

We proceed as follows. We simulate data for 5,000 experiments, where in each experiment we fix

the conversion rate of the baseline, and draw conversion rates for k = 1, . . . , 10 variations by adding

effect sizes which are drawn according to a mixture model where the effect is zero with probability

π0 and drawn from N (µ, σ2) with probability 1−π0. The sample size for each experiment is drawn

from a log-normal distribution with mean and variance based on the empirical distribution of the

2,766 experiments we study.

Given the parameters of each experiment (sample size and baseline and variation conversion

rates) we simulate Bernoulli draws as the conversion of each member of the sample. We then

calculate the observed effect size, and pick one of the variations as the one being implemented in

the experiment, based on the three approaches we compare. For the traditional approach we pick
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any variation which passes a one-sided significance test with α = 0.05 for implementation. For

the replication approach, we pick the variation with the largest observed effect size, test whether

it passes a one-sided significance test with α = 0.05, and if it does, replicate the baseline and

the variation Bernoulli draws, and measure the effect in the replication. The result is selected for

implementation if the joint z-score (using Stouffer’s method) of the initial test and the replication

passes the one-sided hypothesis test. Finally, for pick-the-best, we select the variation with the

largest observed effect size, and if it is positive, choose it for implementation. If no variation is

selected for implementation, we assume that the experimenter stays with the baseline.

The sample size for each variation is set as follows. Given the sample size n of the experiment

drawn as described above, and given the number of variations k in the experiment, the sample size

of each variation is n
k+1 in the case of the traditional and pick-the-best approaches, and n

k+3 for

replication, since an additional baseline and variation condition must be allowed for replication.10

Since we know for each effect whether it comes from the null or not, we calculate the FDR as

the proportion of all implemented variations whose true effect is null. The expected gain EG is

computed as the average implemented effect size across all experiments, i.e., zero if the baseline

was selected, or the true effect size of the variation if it was selected.

We set µ = −0.0032 and vary π0 = (0.6, 0.7, 0.8) and σ = (0.04, 0.08, 0.16). Below we present the

results for the parameter values (µ, π0, σ) = (−0.0032, 0.7, 0.08) which closely match our empirical

estimates. Appendix C presents the results for the remaining combinations of parameter values.

Figure 7 shows the FDR for each approach with k ranging from 1 to 10. The replication

approach has the lowest FDR, and it remains constant around 12%. The FDR for the traditional

approach is about twice as high, but increases from 24% for k = 1 to 29% for k = 10. The reason

is that the sample size and hence power decreases with k. This also happens for the replication,

but that gets neutralized by selecting the largest variation out of k. Clearly, pick-the-best which is

equivalent to a one sided test with α = 0.50, performs the worst. The FDR improves from π0 = 70%

when k = 1, to about 40% when k = 10. In short, replication dominates both alternatives in terms

of FDR.

Figure 8 shows the expected gains EG for each approach with k ranging from 1 to 10. Consistent

10Using the same sample size per arm in both steps of a pre-planned replication design is not quite optimal.
Our simulation therefore does not capture the full gains in FDR achievable by an optimally designed pre-planned
replication study.
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Figure 7: False Discovery Rates for Three Testing Approaches
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with Section 3, pick-the-best dominates. However, the gap with replication is rather small and

remains fairly constant with k. Both dramatically outperform the traditional approach, once k is

larger than 1. The reason is that both pick-the-best and replication benefit from selection when k

increases.

In short, A/B tests with replication clearly dominate the traditional approach. Whether it

dominates the pick-the-best approach depends on the trade-off that a decision maker makes between

forgoing expected gains and avoiding the cost of implementing a false discovery.

8 To what extent do our findings generalize?

The question of how well our findings generalize has three facets, which we address in turn.

Generalizing to other companies. Since Optimizely is the market-leader among A/B testing

platforms in the U.S., its customer base likely is representative of U.S. companies relying on such

platforms. However, it is not representative of extremely sophisticated and intensive users of A/B

testing who have developed their own internal platforms like Google, Microsoft Bing, Amazon, or

Booking.com. These companies often chase extremely small effects but do so using extremely large

sample sizes, and it is therefore hard to speculate a priori about their typical FDR. Nevertheless, we

suspect that the average FDR on Microsoft Bing (before replication) is not very different from what
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Figure 8: Expected Gains from Experimentation (EG) for Three Testing Approaches

0.00

0.02

0.04

0.06

1 2 3 4 5 6 7 8 9 10
k

Pick Best
Traditional
Replicate Best

we estimated in our sample, because their analysts report an estimate of 80% for π0, recommend

using 80% power, and note that using α = 5% is common (Deng 2015, Dmitriev et al. 2017).

Generalizing to more recent experiments. As noted in Section 4.4, the experiments we analyze

from 2014 are similar to those run on the same platform in 2017 and 2018 in the number of

variations, runtime, industry, symmetry of positive vs. negative significant findings, and fraction of

significant findings. Also, the pattern that the FDR decreases as an experimenter gains experience

with A/B testing (Section 5.4) is likely offset by the influx of new users of A/B testing. In short,

we see no reason to expect our findings to be wide off the mark of current A/B testing, but of

course very much welcome new investigations leveraging recent data.

Generalizing to more recent testing practices. We calculated standard statistics for mainstream

A/B tests. We doubt that two-stage designs or other methods developed recently to reduce the

FDR (e.g., Deng et al. 2014) are used outside a small set of extremely sophisticated users. Also, our

FDRs are expectedly similar to those obtained when the statistical analysis corrects for multiple

comparisons, like Optimizely’s Stats Engine (Pekelis et al. 2015), other FDR-control methods, and

Bayesian testing. The reason is that we declared discovery-or-not for each variation separately.

However, to the extent that users today do not engage in “data peeking” or optional stopping, or

that the platform automatically corrects for it, then our FDR estimates may be higher than those

currently generated. Even so, the impact of optional stopping on the FDR in the experiments we
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study is probably slight given the evidence in Section 6.4 and in Berman et al. (2018).

9 Conclusion

We investigate the False Discovery Rate (FDR) in website A/B testing, i.e., the fraction of all

significant results that are actually null effects. Our data consists of 4,964 effects from 2,766

experiments conducted on a commercial A/B testing platform.

Using three different methods, we find that the FDRs range between 28% and 37% for tests

conducted at 10% significance, and between 18% and 25% for tests at 5% significance. In other

words, about 1 in 5 results significant at p ≤ .05 are actually true nulls.

These elevated FDRs stem from the high rate of true-nulls (about 70%) and not from lack of

statistical power on average, which we calculate to be roughly 70% at α = 0.1 and roughly 65%

at α = 0.05. Moreover, our estimate of π0 = 0.72 implies that even if power were increased to

100%, the FDR would not fall below 20% at α = 0.1 and 11% at α = 0.05. These findings support

earlier suspicions that some of the frustrations with A/B testing stem from the ineffectiveness of

the interventions being tested rather than from inadequacies of the method itself (Fung 2014).

More experienced experimenters tend to achieve lower FDRs, while the number of variations

or goals in the experiment is not associated with higher or lower FDRs. The negative association

between experience and FDR operates through both a lower rate of true nulls and a larger true

effect size. We also find that the industries that are the heaviest users of A/B testing on this

platform have lower FDRs. Our data do not allow us to determine whether the association reflects

learning, larger sample sizes, or self-selection.

We use our estimates to shed some light on what changes to the basic A/B testing design might

lead to a lower FDR. For the typical effect size (certainly up to the 75th percentile), tightening α

and increasing sample size to keep power roughly constant holds little promise. This is likely also

true for companies enjoying massive traffic but chasing very small effects. Much more promising

are two-stage designs like replication. Even better is a two-stage design with multiple variations.

This not only lowers the FDR, but also increases the expected gain from experimentation.

Though our setting is a specific A/B testing platform, we expect our findings to be repre-

sentative of many website A/B tests, since our data consists of nearly 5,000 effects from 2,766

experiments and the platform accounts for about 35% of the market for A/B testing services. Even
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so, several companies that use A/B tests very intensively, like Amazon, Facebook and Microsoft,

have developed their own internal platforms and are therefore probably not represented in our data.

Such very experienced experimenters would likely enjoy lower FDRs than the typical account in

our data does, were it not for the fact that they tend to chase even smaller effects than those we

study. A second possible concern about the generalizability of our findings is that, after we collected

our data, Optimizely and other platforms shifted from classical hypothesis testing towards FDR

control methods and Bayesian hypothesis testing to account for multiple comparisons and optional

stopping (e.g., Pekelis et al. 2015, Deng et al. 2016, Johari et al. 2019). However, these newer pro-

cedures by themselves do not affect the fraction of true nulls. Furthermore, our FDR calculations

properly avoided multiple comparisons and are unlikely to be much affected by improper optional

stopping, which is what these newer methods account for. Hence, the increasing popularity of FDR

control methods and Bayesian hypothesis testing likely increase the external validity of our FDR

values.

Taking a big-picture perspective, one may ask what an estimate of π0 = 70% implies about firm

efficiency assuming that the baseline represents current practice. One possible explanation for the

high fraction of true nulls is that managers struggle with generating good ideas to assess through

A/B testing (Kohavi et al. 2020), either because their current practices are already close to the

optimum or because the objective functions do not vary much in a wide range around the optimum

(the flat maximum principle, Sinha and Zoltners 2001). The second possible explanation is the

opposite. Managers struggle to generate good ideas because of a lack of diligence, talent or skill,

suggesting a low rather than high efficiency. The third viable explanation is that experimenters

engage mostly in deliberate local search through small deviations from current practice, stemming

from a kaizen philosophy of continuous and disciplined improvement through a stream of small

interventions. Given the presence of three viable explanations, one should not infer from our

findings that the average firm using A/B testing is already operating near-optimally.

For decision makers, our findings have four implications. (i) Have realistic expectations about

your success with finding winners in your tests. Of the nearly 5,000 effects tested, the typical effect

was zero, about 70% of them were probably really zero, and only 20% were significant at α = 5%.

(ii) Have realistic expectations about your success with rolling out test winners. Even among those

interventions that beat the baseline in your experiments at α = 5%, expect 1 out of 5 to have zero
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effect when implemented in the field. (iii) To reduce the risk of false positives, focus on generating

better ideas to test or swing for the fences by generating riskier ideas. (iv) Keep working at it. You

may get better over time at reducing the fraction of false discoveries among your test results.

For analysts, our findings have two implications. (i) To lower the FDR, consider using two-stage

designs with replication and A/B/n tests with multiple variations. (ii) Think about your choice

of the Type I error rate α. To be of greatest use to the organization, it should be informed by

comparing the expected gains in effectiveness from experimentation against loss aversion, switching

costs, and disappointment costs. If the goal is to maximize the expected gain in effectiveness or

to minimize regret about effectiveness (Stoye 2009, Manski and Tetenov 2016, Feit and Berman

2019), then a pick-the-best without testing, which amounts to setting α = 50% in a one-sided test,

is optimal.

For researchers in academia, large in-house analytics teams, and platform providers, our findings

raise at least three research questions. (i) What interventions are associated with a lower FDR and

how does that map into the primitives π0, µ, and σ? (ii) Do some companies and industries have

lower FDRs, and if so, why? Is it because of differences in the quality and variance of ideas or in

the way they are being tested (e.g., sample size, two stage-designs)? Also, if the FDR improves

with experience because of learning, what exactly is being learned and how can it be fostered?

(iii) What is the optimal FDR? Statistical decision theory does not provide an answer unless the

decision maker declares their objective function. There are at least five elements that should be

considered: The expected gain from experimentation EG; the set-up cost of running an experiment

of a given size; the switching cost of discoveries; the disappointment cost of false discoveries; and

the degree of loss aversion. The optimal FDR will be a function of the weights on these components,

and these weights are likely to vary across decisions and contexts.
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Web Appendix

A Derivations for Section 3

We denote the pdf of the true effect θ as f(θ) and write it as:

f(θ) = π0f0(θ) + (1− π0)f1(θ) (A1)

where f0(θ) = 1 if θ = 0 and zero otherwise, and f1(θ) is the density of the non-null effects.

Assuming a variation is implemented if it is significant and positive, the expected gain from an

experiment is:

EG =

∫
θ

∫
θ̂
θI(θ̂/ŝ > z1−α)g(θ̂|θ)f(θ)dθ̂dθ (A2)

where θ̂ is the observed effect with density g(·), I(·) is the indicator function, ŝ is the estimated

standard error and z1−α is the z-score threshold for a one-sided test of significance. Note that any

one-sided test would declare only non-negative effects as significant as long as α ≤ 0.5.

We can rewrite this expression as:

EG =

∫
θ
θ

∫
θ̂>z1−αŝ

g(θ̂|θ)f(θ)dθ̂dθ (A3)

= (1− π0)
∫
θ 6=0

θ

∫
θ̂>z1−αŝ

g(θ̂|θ, θ 6= 0)f(θ|θ 6= 0)dθ̂dθ (A4)

the first equation is due to the truncation by the significance threshold, and the second is due to

the null portion of the mixture not contributing to the expected gain.

Using Bayes rule, we can replace g(θ̂|θ, θ 6= 0)f(θ|θ 6= 0) = f(θ|θ̂, θ 6= 0)g(θ̂|θ 6= 0), resulting in:

(1− π0)
∫
θ 6=0

θ

∫
θ̂>z1−αŝ

g(θ̂|θ, θ 6= 0)f(θ|θ 6= 0)dθ̂dθ (A5)

= (1− π0)
∫
θ 6=0

θ

∫
θ̂>z1−αŝ

f(θ|θ̂, θ 6= 0)g(θ̂|θ 6= 0)dθ̂dθ (A6)

= (1− π0)
∫
θ̂>z1−αŝ

∫
θ 6=0

θf(θ|θ̂, θ 6= 0)dθg(θ̂|θ 6= 0)dθ̂ (A7)

= (1− π0)
∫
θ̂>z1−αŝ

E[θ|θ̂, θ 6= 0]g(θ̂|θ 6= 0)dθ̂ (A8)
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the second equality changes the order of integration using Fubini’s theorem.

Finally, dividing and multiplying by Pr(θ̂/ŝ > z1−α) =
∫
θ̂>z1−αŝ

g(θ̂|θ 6= 0)dθ̂ we receive the

expression in Equation (12):

EG = (1− π0)
∫
θ̂>z1−αŝ

E[θ|θ̂, θ 6= 0]g(θ̂|θ 6= 0)dθ̂ (A9)

= (1− π0)Pr(θ̂/ŝ > z1−α)

∫
θ̂>z1−αŝ

E[θ|θ̂, θ 6= 0]g(θ̂|θ 6= 0)dθ̂∫
θ̂>z1−αŝ

g(θ̂|θ 6= 0)dθ̂
(A10)

= Pr(θ 6= 0)Pr(θ̂/ŝ > z1−α)E[θ|θ̂/ŝ > z1−α, θ 6= 0] (A11)

We now derive E[θ|θ̂/ŝ > z1−α, θ 6= 0] using the Normal mixture pdfs from Method A in Section

2.2:

E[θ|θ̂/ŝ > z1−α, θ 6= 0] =

∫
θ̂/ŝ>z1−α

E[θ|θ̂, θ 6= 0]f(θ̂|θ 6= 0)dθ̂∫
θ̂/ŝ>z1−α

g(θ̂|θ 6= 0)dθ̂
(A12)

=

∫
θ̂/ŝ>z1−α

∫
θ θf(θ|θ̂, θ 6= 0)dθg(θ̂|θ 6= 0)dθ̂∫
θ̂/ŝ>z1−α

g(θ̂|θ 6= 0)dθ̂
(A13)

=

∫
θ
θf(θ|θ 6= 0)

∫
θ̂/ŝ>z1−α

g(θ̂|θ, θ 6= 0)dθ̂∫
θ̂/ŝ>z1−α

g(θ̂|θ 6= 0)dθ̂
dθ (A14)

=

∫
θ
θf(θ|θ 6= 0)

Φ
(
θ−z1−αŝ

ŝ

)
∫
θ̂/ŝ>z1−α

g(θ̂|θ 6= 0)dθ̂
dθ (A15)

=

∫
θ θ

1
σφ
(
θ−µ
σ

)
Φ
(
θ−z1−αŝ

ŝ

)
dθ∫

θ̂/ŝ>z1−α
g(θ̂|θ 6= 0)dθ̂

(A16)

Letting y = θ−µ
σ :

∫
θ
θ

1

σ
φ

(
θ − µ
σ

)
Φ

(
θ − z1−αŝ

ŝ

)
dθ =

∫
y
(σy + µ)φ(y)Φ

(
µ+ σy − z1−αŝ

ŝ

)
dy (A17)
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and using:

∫
y
yφ(y)Φ (a+ by) dy =

b√
1 + b2

φ

(
a√

1 + b2

)
(A18)∫

y
φ(y)Φ (a+ by) dy = Φ

(
a√

1 + b2

)
(A19)

we have:

∫
θ
θ

1

σ
φ

(
θ − µ
σ

)
Φ

(
θ − z1−αŝ

ŝ

)
dθ =

σ2√
s2 + σ2

φ

(
µ− z1−αŝ√
ŝ2 + σ2

)
+ µΦ

(
µ− z1−αŝ√
ŝ2 + σ2

)
(A20)

Finally:

∫
θ̂/ŝ>z1−α

g(θ̂|θ 6= 0)dθ̂ = Φ

(
µ− z1−αŝ√
s2 + σ2

)
(A21)

And combining Equations (A20) and (A21), we arrive at:

E[θ|θ̂/ŝ > z1−α, θ 6= 0] = µ+
σ2√
ŝ2 + σ2

φ
(
µ−z1−α·ŝ√
ŝ2+σ2

)
Φ
(
µ−z1−α·ŝ√
ŝ2+σ2

) (A22)

B Supplemental Analyses

B.1 FDR analysis by industry

This analysis extends the model reported in Table 9 with an account-specific random effect in the

equation for π0 and with dummies for each of the four main industries to the equations for π0, µ

and σ. These additions affect the point estimates only very little and notably affect the significance

level of only one point estimate. The standard error of the coefficient of the number of goals in

the π0 equation roughly doubles, making the coefficient not statistically significant even at 10%.

Experiments in the Hi-tech and Financial & Professional Services industries are associated with

average true effects that are notably more negative than the baseline, which is consistent with

a lower-than-baseline FDR in two-sided tests (Table B.2). Experiments in the Retail and Media

industries are associated with average true effects that vary notably more around zero, which is

consistent with a lower-than-baseline FDR in two-sided tests (Table B.2). Also, experiments in

those industries tend to have larger samples, which likely reduces their standard error which is also
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taken into account in the model, and likely improves their experiments’ power and FDR. Finally,

experiments in the four industries have lower-than-baseline values of π0, but not significantly better

or worse π0 values after controlling for experimenters’ experience and experiments’ number of goals

and number of variations.

Table B.1: Method B mixture model with parameters as a function of covariates

logit(π0) µ log(σ)

Intercept 2.0731∗∗∗ −0.0003 −2.7633∗∗∗

(0.1955) (0.0033) (0.0434)
log(Past No. Exp) -0.2214∗∗ 0.0064∗∗∗ −0.0376

(0.0826) (0.0017) (0.0245)
log(Total Goals) 0.1989 0.0102∗∗ 0.0949∗

(0.1355) (0.0034) (0.0476)
No. Non-baseline Variations -0.1013∗∗∗ −0.0010∗∗∗ −0.0401∗∗∗

(0.02284) (0.0002) (0.0081)

Retail 0.2483 0.0191∗ 0.3881∗∗∗

(0.3549) (0.0095) (0.0968)
Media 0.0516 −0.0055 0.2347∗

(0.3777) (0.0096) (0.0980)
Hi-Tech -0.4410 −0.0235∗∗ 0.1446

(0.3742) (0.0080) (0.0926)
Fin. & Prof. Services 0.3842 −0.0305∗∗∗ −0.3605∗∗

(0.5047) (0.0074) (0.1312)

SD(RE) 4.729∗∗∗

(0.7206)

N = 4,955 from 2,761 experiments. −2LL = -22,898. S.E. in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table B.2: FDR estimate for each of the top 4 industries

Retail Media High Tech Fin./Prof.
Services

Other

π0 0.617 0.692 0.669 0.649 0.761

α(%)
20 0.303 0.351 0.341 0.353 0.458
10 0.219 0.230 0.209 0.254 0.326
5 0.138 0.149 0.122 0.159 0.218
1 0.041 0.042 0.032 0.050 0.072
0.1 0.006 0.005 0.004 0.006 0.011

Med. sample size 6,223 25,830 5,164 5,142 2,057
Med. past no. exp. 234 294 178 179 43.5
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B.2 Analysis of FDRs by terciles

Since this analysis by tercile focuses on contrasting the FDR across different types of experiments,

we provide not only point estimates but also 95% confidence intervals computed using bootstrap-

ping. We emphasize that statisticians, including proponents of bootstrapping like Efron and Tib-

shirani, to our knowledge do not advocate or justify the use of bootstrap-based confidence intervals

on FDRs.

Table B.3: FDR by tercile of experimenter’s past experience

FDR (%) 95% C.I. (%)

α(%) Hi Med Lo Hi Med Lo

20.0 32.6 42.2 46.0 [ 26.5, 39.3 ] [ 34.5, 51.0 ] [ 37.7, 55.1 ]
10.0 21.5 30.1 33.1 [ 17.4, 26.1 ] [ 24.4, 36.8 ] [ 27.1, 40.1 ]
5.0 13.1 19.1 23.6 [ 10.6, 16.0 ] [ 15.4, 23.5 ] [ 19.0, 29.0 ]
1.0 3.7 5.9 8.3 [ 3.0, 4.5 ] [ 4.7, 7.4 ] [ 6.6, 10.5 ]
0.1 0.5 0.8 1.4 [ 0.4, 0.6 ] [ 0.7, 1.0 ] [ 1.1, 1.8 ]

Table B.4: FDR by tercile of experiment’s number of variations

FDR (%) 95% C.I. (%)

α(%) Hi Med Lo Hi Med Lo

20.0 35.2 45.8 39.1 [ 28.6, 43.0 ] [ 37.6, 55.0 ] [ 32.3, 46.4 ]
10.0 24.7 31.7 27.2 [ 20.0, 30.5 ] [ 25.9, 38.3 ] [ 22.4, 32.4 ]
5.0 16.1 20.5 17.4 [ 13.0, 20.0 ] [ 16.7, 25.0 ] [ 14.3, 20.9 ]
1.0 5.1 6.1 5.4 [ 4.1, 6.5 ] [ 4.9, 7.5 ] [ 4.3, 6.5 ]
0.1 0.8 0.8 0.7 [ 0.6, 1.1 ] [ 0.6, 1.0 ] [ 0.6, 0.9 ]

Table B.5: FDR by tercile of experiment’s number of goals

FDR (%) 95% C.I. (%)

α(%) Hi Med Lo Hi Med Lo

20.0 38.2 44.4 38.2 [ 30.6, 46.5 ] [ 36.4, 53.2 ] [ 31.9, 45.2 ]
10.0 26.2 31.5 26.5 [ 20.9, 32.0 ] [ 25.6, 38.2 ] [ 22.0, 31.4 ]
5.0 16.7 20.8 17.0 [ 13.3, 20.6 ] [ 16.8, 25.4 ] [ 14.0, 20.3 ]
1.0 4.9 6.8 5.3 [ 3.8, 6.1 ] [ 5.4, 8.4 ] [ 4.3, 6.4 ]
0.1 0.7 1.0 0.7 [ 0.5, 0.9 ] [ 0.7, 1.2 ] [ 0.6, 0.9 ]
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B.3 Analysis of single-goal experiments

Table B.6: Estimates of π0 and other model parameters

Method
A B C B/C

π0 0.6319∗∗∗ 0.7138∗∗∗ 0.6862∗∗∗ 0.6862
(0.0397) (0.0305) (0.0936)

µ −0.0139∗∗ −0.0170∗∗ −0.0161∗∗∗

(0.0050) (0.0052) (0.0048)
σ 0.0738∗∗∗ 0.0599∗∗∗ 0.0581∗∗∗

(0.0045) (0.0048) (0.0041)
s 0.0157∗∗∗

(0.0013)

−2LL -2,547 -2,808 -2,808

N = 682. S.E. in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table B.7: FDR (%) at various significance levels

Method
B C B/C

α (%)

20.0 42.9 37.0 40.1
10.0 30.9 24.9 28.6
5.0 21.3 16.0 19.6
1.0 8.2 4.7 7.6
0.1 2.1 0.7 2.0

B.4 FDR with multiple comparisons, without relying on average power

To quantify how much improper multiple comparisons inflate the FDR, and to do so without

relying on an estimate of average power or β, we proceed as follows. First, we compute the FDR

for experiments with k = 1, 2, . . . , 6 variations, assuming that π̂0 = 0.72 and that experimenters

correctly declare significance variation by variation (Equation (10)). This covers 2,734 of the

2,766 experiments. Next, we compute the FDR for the same set of experiments, again assuming

π̂0 = 0.72, but now assuming that people improperly declare an experiment as significant if any

variation reached significance. Specifically, we do so by declaring all variations in an experiment

significant if at least one reached significance α, and by computing the FDR as:

F̂DR(k, α) =
m(k) · π̂0 · (1− (1− α)k)

#{experiments with min(pj) ≤ α}
(A23)
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where m(k) is the number of experiments with k variations.

Table B.8 reports the results for α = 10%.

Table B.8: The increase in FDR due to improper multiple comparisons (α = 10%)

Num Vars (k) Num Exp. FDR (Proper) FDR (Mult. Comp.)

1 1,810 28% 28%
2 483 29% 36%
3 233 31% 48%
4 97 22% 44%
5 67 30% 56%
6 24 25% 51%

B.5 Required sample size in each arm of the experiment

The Table below reports the sample size required in each arm of a simple A/B test for a given value

of α, β and the true effect size expressed as a percentile in the distribution of observed effect sizes.

The Table also reports the FDR expected from a given combination of α, β and π0.

Table B.9: Required sample size in each arm for a given α, β and the true effect size

Error rates Expected FDR Percentile of Effect
α β π0 = .72 π0 = .80 67 75 90 95 99

0.2 0.2 39.1% 50.0% 69,551 15,105 1,702 585 112
0.1 0.2 24.3% 33.3% 95,390 20,717 2,335 802 153
0.05 0.2 13.8% 20.0% 121,099 26,301 2,964 1,018 194
0.01 0.2 3.1% 4.8% 180,193 39,135 4,411 1,515 289
0.001 0.2 0.3% 0.5% 263,443 57,216 6,448 2,216 423
0.2 0.1 36.4% 47.1% 101,360 22,014 2,481 852 163
0.1 0.1 22.2% 30.8% 132,131 28,697 3,234 1,111 212
0.05 0.1 12.5% 18.2% 162,118 35,210 3,968 1,363 260
0.01 0.1 2.8% 4.3% 229,572 49,860 5,619 1,931 368
0.001 0.1 0.3% 0.4% 322,524 70,047 7,895 2,712 517
0.2 0.05 35.1% 45.7% 132,131 28,697 3,234 1,111 212
0.1 0.05 21.3% 29.6% 166,974 36,264 4,087 1,404 268
0.05 0.05 11.9% 17.4% 200,494 43,544 4,908 1,686 322
0.01 0.05 2.6% 4.0% 274,853 59,694 6,728 2,311 441
0.001 0.05 0.3% 0.4% 375,816 81,622 9,199 3,161 603
0.2 0.01 34.2% 44.7% 200,837 43,619 4,916 1,689 322
0.1 0.01 20.6% 28.8% 243,320 52,846 5,956 2,046 390
0.05 0.01 11.5% 16.8% 283,467 61,565 6,939 2,384 455
0.01 0.01 2.5% 3.9% 370,777 80,527 9,076 3,118 595
0.001 0.01 0.3% 0.4% 486,770 105,719 11,915 4,094 781
0.2 0.001 34.0% 44.5% 294,884 64,044 7,218 2,480 473
0.1 0.001 20.5% 28.6% 345,931 75,131 8,468 2,909 555
0.05 0.001 11.4% 16.7% 393,506 85,464 9,632 3,309 631
0.01 0.001 2.5% 3.8% 495,333 107,579 12,125 4,166 795
0.001 0.001 0.3% 0.4% 628,173 136,430 15,376 5,283 1,008

50



C Simulation Results

Figure C.1: False Discovery Rates for Three Testing Approaches
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Figure C.2: Expected Gains from Experimentation (EG) for Three Testing Approaches
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